

## CONCOURS ARTS ET MÉTIERS ParisTech - ESTP - POLYTECH

# Épreuve de Mathématiques 2 PSI

### Durée 3 h

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, d'une part il le signale au chef de salle, d'autre part il le signale sur sa copie et poursuit sa composition en indiquant les raisons des initiatives qu'il est amené à prendre.

## L'usage de calculatrices est interdit.

### **AVERTISSEMENT**

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies. En particulier, les résultats non justifiés ne seront pas pris en compte. Les candidats sont invités à encadrer les résultats de leurs calculs.

#### Préliminaires

Soit n un entier naturel non nul.

- 1. Soit  $\theta \in [0, 2\pi[$ . Déterminer, s'ils existent, module et argument du nombre complexe :  $u = 1 + e^{i\theta}$
- **2.** On note  $P_n$  le polynôme de  $\mathbb{C}[X]$  défini par :

$$P_n(X) = \frac{1}{2i} \left[ (X+i)^{2n+1} - (X-i)^{2n+1} \right]$$

- **2.1.** Etude des cas n = 1 et n = 2.
  - **2.1.1.** Déterminer les polynômes  $P_1$  et  $P_2$ .
  - **2.1.2.** Vérifier que  $P_1 \in \mathbb{R}_2[X]$  et que  $P_2 \in \mathbb{R}_4[X]$ . Sont-ils irréductibles dans  $\mathbb{R}[X]$ ?
- 2.2. On revient au cas général.
  - **2.2.1.** Montrer que  $P_n \in \mathbb{C}_{2n}[X]$ . Donner son degré et son coefficient dominant.
  - **2.2.2.** Soit  $N \in \mathbb{N}^*$ . Donner l'espression des racines N-ièmes de l'unité.
  - **2.2.3.** Calculer  $P_n(i)$ .
  - **2.2.4.** Prouver par un argument géométrique que les racines de  $P_n$  sont réelles.
  - **2.2.5.** Soit  $a \in \mathbb{C}$ .

Prouver l'équivalence :

$$a \text{ racine de } P_n \iff \exists \, k \in \llbracket 1, 2n \rrbracket \;,\; a \left( \mathrm{e}^{2ik\pi/(2n+1)} - 1 \right) = i \left( \mathrm{e}^{2ik\pi/(2n+1)} + 1 \right)$$

- **2.2.6.** Déterminer les racines du polynôme  $P_n$ . Vérifier alors le résultat obtenu à la question **2.2.4.**
- **2.2.7.** En développant  $P_n$ , déterminer un polynôme  $Q_n$  de degré n et à coefficients réels tel que :

$$P_n(X) = Q_n(X^2)$$

On admettra l'unicité du polynôme  $Q_n$  obtenu.

- **2.2.8.** Expliciter  $Q_1$  et  $Q_2$  et déterminer leurs racines respectives.
- **2.2.9.** Déterminer les racines de  $Q_n$  en fonction de celles de  $P_n$ .
- **3.** On pose  $S_n = \sum_{k=1}^n \frac{1}{\tan^2 \left(\frac{k\pi}{2n+1}\right)}$ .

En utilisant des résultats obtenus à la question précédente, montrer que :  $S_n = \frac{n(2n-1)}{3}$ 

4. Illustrer graphiquement les inégalités suivantes que l'on admettra :

$$\forall x \in \left[0, \frac{\pi}{2}\right], \quad 0 \leqslant \sin(x) \leqslant x \leqslant \tan(x)$$

En déduire que :

$$\forall x \in \left] 0, \frac{\pi}{2} \right[, \frac{1}{\tan^2(x)} \leqslant \frac{1}{x^2} \leqslant 1 + \frac{1}{\tan^2(x)}$$

 $^{2}$ 

5. Justifier la convergence de la série de terme général  $\frac{1}{k^2}$  et calculer la somme  $\sum_{k=1}^{+\infty} \frac{1}{k^2}$ .

#### Partie 1

Soit  $x \in \mathbb{R}$ . On note, lorsque cela a un sens,  $H(x) = \int_0^1 \frac{t^x \, \ln(t)}{t-1} \, \mathrm{d}t$ .

- 1. Démontrer que pour s>-1, l'intégrale  $J_s=\int_0^1 t^s\,\ln(t)\,\mathrm{d}t$  existe et donner sa valeur.
- **2.** Etude de la fonction H:
  - **2.1.** Montrer que l'ensemble de définition de la fonction H est  $D_H = ]-1, +\infty[$ .
  - **2.2.** Montrer que la fonction H est monotone sur  $D_H$ .
  - **2.3.** Montrer que pour tout réel  $\alpha > 0$ , la fonction  $t \mapsto \frac{t^{\alpha}(\ln(t))^2}{1-t}$  est prolongeable en une fonction bornée sur le segment [0,1].
  - **2.4.** Démontrer que la fonction H est de classe  $C^1$  sur  $D_H$ . Retrouver alors la monotonie de la fonction H.
  - **2.5.** Soit  $(x_n)$  une suite réelle de limite  $+\infty$ . Déterminer  $\lim_{n\to +\infty} H(x_n)$ . En déduire  $\lim_{x\to +\infty} H(x)$ .
  - 2.6. Démontrer que :

$$\forall x > -1, \ H(x) - H(x+1) = \frac{1}{(x+1)^2}$$

- **2.7.** Déterminer alors un équivalent simple de H(x) lorsque x tend vers -1 par valeurs supérieures.
- **2.8.** Soit x > -1.
  - **2.8.1.** Justifier la convergence de la série  $\sum_{k\geqslant 1} \frac{1}{(x+k)^2}$ .
  - **2.8.2.** Prouver que pour tout entier naturel n non nul :  $H(x) = \sum_{k=1}^{n} \frac{1}{(x+k)^2} + H(x+n)$ .
  - **2.8.3.** En déduire que  $H(x) = \sum_{k=1}^{+\infty} \frac{1}{(x+k)^2}$ .
  - **2.8.4.** Calculer H(0) et H(1).

#### Partie 2

1. Prouver que pour tout x > -1 et tout entier naturel k non nul :

$$\frac{1}{(x+k+1)^2} \leqslant \int_{k}^{k+1} \frac{\mathrm{d}t}{(x+t)^2} \leqslant \frac{1}{(x+k)^2}$$

- **2.** Déterminer un équivalent de H(x) lorsque x tend vers  $+\infty$ .
- **3.** Pour tout entier naturel n, on pose  $u_n = H(n)$ .
  - **3.1.** Etudier la convergence des séries  $\sum_{n\geqslant 0} u_n$  et  $\sum_{n\geqslant 0} (-1)^n u_n$ .
  - **3.2.** Démontrer que :  $\sum_{n=0}^{+\infty} (-1)^n u_n = \int_0^1 \frac{\ln(v)}{v^2 1} dv$ .
  - **3.3.** Donner la valeur de cette intégrale en fonction de  $H\left(-\frac{1}{2}\right)$

#### Partie 3

### Développement en série entière de la fonction H

Pour tout entier naturel  $k \ge 2$ , on note  $Z_k = \sum_{p=1}^{+\infty} \frac{1}{p^k}$ 

- 1. Pour tout couple d'entiers naturels (p,q), on pose  $I_{p,q}=\int_0^1 t^p [\ln(t)]^q dt$  et on admettra que cette intégrale existe.
  - **1.1.** Justifier que si  $q \geqslant 1$ ,  $I_{p,q} = -\frac{q}{p+1} I_{p,q-1}$
  - **1.2.** En déduire la valeur de  $I_{p,q}$ .
- **2. 2.1.** Justifier l'existence pour tout  $n \in \mathbb{N}$  de  $B_n = \int_0^1 \frac{[\ln(t)]^{n+1}}{t-1} dt$ .
  - **2.2.** Exprimer  $B_n$  à l'aide des intégrales  $I_{p,q}$ . (On pourra utiliser la série de terme général  $t^p$ )
  - **2.3.** Prouver enfin que :  $\forall n \in \mathbb{N}, B_n = (-1)^n (n+1)! Z_{n+2}$
- 3. En déduire alors que :

$$\forall x \in ]-1,1[, H(x) = \sum_{k=0}^{+\infty} (-1)^k (k+1) Z_{k+2} x^k$$

4. Préciser alors le rayon de convergence de la série entière obtenue à la question précédente.