

CONCOURS ARTS ET MÉTIERS ParisTech - ESTP - POLYTECH

Épreuve de Mathématiques 1 PSI

Durée 4 h

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, d'une part il le signale au chef de salle, d'autre part il le signale sur sa copie et poursuit sa composition en indiquant les raisons des initiatives qu'il est amené à prendre.

L'usage de calculatrices est interdit.

AVERTISSEMENT

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies. En particulier, les résultats non justifiés ne seront pas pris en compte. Les candidats sont invités à encadrer les résultats de leurs calculs.

Tournez la page S.V.P.

Le sujet est constitué de quatre exercices qui testent plusieurs compétences complémentaires des programmes de mathématiques et d'« informatique pour tous » de la filière PSI.

Il est donc demandé au candidat de répartir équitablement son travail sur les quatre exercices proposés. Il en sera tenu compte dans l'évaluation de l'épreuve.

EXERCICE 1.

But de l'exercice

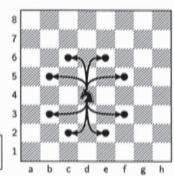
Le jeu d'échec se joue sur un échiquier, c'est à dire sur un plateau de 8×8 cases. Ces cases sont référencées de a1 à h8 (cf. figure).

Une pièce, appelée le cavalier, se déplace suivant un "L" imaginaire d'une longueur de deux cases et d'une largeur d'une case.

Exemple : un cavalier situé sur la case d4 atteint, en un seul déplacement, une des huit cases b5, c6, e6, f5, f3, e2, c2 et b3 (voir figure ci-contre).

Dans toute la suite de l'exercice, on appellera case permise toute case que le cavalier peut atteindre en un déplacement à partir de sa position.

Le but de cet exercice est d'écrire un programme faisant parcourir l'ensemble de l'échiquier à un cavalier en ne passant sur chaque case qu'une et une seule fois.



Motivation et méthode retenue

Une première idée est de faire parcourir toutes les cases possibles à un cavalier en listant à chaque déplacement les cases parcourues. Lorsque celui-ci ne peut plus avancer on consulte le nombre de cases parcourues.

- Si ce nombre est égal à $64 = 8 \times 8$, alors le problème est résolu.
- Sinon, il faut revenir en arrière et tester d'autres chemins.
 - 0. Exemple : on considère le parcours suivant d'un cavalier démarrant en a1 (figure ci contre) :

Avec ce début de parcours, au déplacement suivant :

- a. le cavalier va en b1. Peut-il accomplir sa mission?
- b. le cavalier ne va pas en b1. Peut-il accomplir sa mission?

8 7 6 5 • 4 • 3 • • 9 1

Il convient donc dans la résolution du problème proposé d'éviter de se retrouver dans la situation repérée à la question 0.

Dans tout ce qui suit, nous nommerons **coordonnées** d'une case la liste d'entiers [i, j] où i représente le numéro de ligne et j le numéro de colonne (tous deux compris entre 0 et 7). Par exemple, la case b3 a pour **coordonnées** [2, 1].

D'autre part, les cases sont numérotées de 0 à 63 en partant du coin gauche comme indiqué par la figure ci-contre.

Nous appellerons indice d'une case le numéro n compris entre 0 et 63 ainsi déterminé. Ainsi la case b3 a pour indice 17.

	a	b	C	d	e	f	g	h
1	0	1	2	3	4	5	6	7
2	8	H	10	11	12	13	14	15
3	16	17	18	19	20	21	22	23
4	24	25	26	27	28	29	30	31
5	32	33	34	35	36	37	38	39
6	40	41	42	43	44	45	46	47
7	48	49	50	51	52	53	54	55
8	56	57	58	59	60	61	62	63

Les questions

 Écrire une fonction Indice qui aux coordonnées |i, j| d'une case renvoie son indice. Ainsi, Indice appliquée à [2, 1] doit renvoyer 17.

- Écrire une fonction Coord qui, à l'indice n d'une case renvoie la liste [i, j] de ses coordonnées.
 Ainsi Coord appliquée à 17 doit renvoyer [2, 1].
- 3. On considère la fonction Python CasA suivante :

```
def CasA(n):
    Deplacements = [[1, -2], [2, -1], [2, 1], [1, 2], [-1, 2], [-2, 1], [-2, -1], [-1, -2]]
    L = []
    i, j = Coord(n)
    for d in Deplacements:
        u = i +d[0]
        v = j +d[1]
        if u >=0 and u <8 and v >=0 and v < 8:
            L.append(Indice([u, v]))
    return L</pre>
```

- 3.1 Que renvoient CasA(0) et CasA(39)?
- 3.2 Expliquer en une phrase ce que fait cette fonction.
- Écrire une fonction Init ne prenant aucun argument et qui modifie deux variables globales ListeCA et ListeCoups.
 ListeCoups recevra la liste vide [].

ListeCA recevra une liste de 64 éléments. Chaque élément ListeCA[n] (pour $0 \le n \le 63$) devra contenir la liste des indices des cases qu'un cavalier peut atteindre en un coup à partir de la case d'indice n.

5. Après exécution de la fonction Init(), la commande >>> ListeCA[0] renvoie :

```
a = [5]
b - [10, 17]
c - [10, 17, 0]
d - [17, 0, 10]
e - []
f - Elle renvoie une autre valeur.
```

6. Au cours de la recherche, lorsqu'on déplace le cavalier vers la case d'indice n, cet indice n doit être retiré de la liste des cases permises à partir de la position n.

Exemple:

Après exécution de la fonction Init(), la liste des cases permises depuis b1 est [a3, c3, d2], et ListeCA[1] vaut [16, 18, 11]. La liste des cases permises depuis a3 est [b5, c4, c2, b1] et ListeCA[16] vaut [33, 26, 10, 1].

Puis on choisit de commencer le parcours en posant le cavalier en b1. Cette case doit donc être retirée de la liste des cases permises de a3, c3 et d2.

En particulier pour a3, la liste ListeCA[16] devient : [33, 26, 10].

Cette méthode nous permet de détecter les blocages :

Le cavalier arrive sur la case d'indice n:n est alors retiré de toutes les listes ListeCA[k] pour toute case d'indice k permise pour n.

Si dès lors l'une de ces listes devient vide, nous dirons alors que nous sommes dans une situation critique, cela signifiera que la case d'indice k ne peut plus être atteinte que depuis la case d'indice n. Par conséquent :

- si le cavalier se déplace sur une autre case que celle d'indice k, alors cette dernière ne pourra plus jamais être atteinte;
- si le cavalier se déplace sur la case d'indice k, le cavalier est bloqué pour le coup suivant. Et :
 - soit la mission est accomplie,
 - soit le cavalier n'a pas parcouru toutes les cases..

Le programme va réaliser la recherche en maintenant à jour la variable globale ListeCoups afin qu'elle contienne en permanence la liste des positions successives occupées par le cavalier au cours de ses tentatives de déplacement.

Nous avons alors besoin d'écrire trois fonctions :

- 6.1 Écrire une fonction OccupePosition qui :
 - prend comme argument un entier n (indice d'une case), l'ajoute à la fin de la variable globale ListeCoups,
 - puis enlève n de toutes les listes ListeCA[k] pour toutes les cases d'indice k permises depuis la case d'indice n,
 - renvoie enfin la valeur True, si nous sommes dans une situation critique et False sinon.

On pourra utiliser la méthode remove qui permet de retirer d'une liste le premier élément égal à l'argument fourni. Si l'argument ne fait pas partie de la liste, une erreur sera retournée.

```
L = [1, 2, 3, 4, 2, 5]
L.remove(2)
L
```

Les commandes précédentes renvoient la liste [1, 3, 4, 2, 5].

```
L = [1, 2, 3, 4, 2, 5]
L.remove(6)
```

Les commandes précédentes provoquent une erreur.

- 6.2 Écrire une fonction LiberePosition qui ne prend pas d'argument et qui
 - récupére le dernier élément n de la variable globale ListeCoups (i.e. n est l'indice de la dernière case jouée à l'aide de la fonction OccupePosition(n)),
 - puis l'enlève de ListeCoups,
 - et enfin, qui ajoute n à toutes les listes ListeCA[k] pour toutes les cases d'indice k permises depuis la case d'indice n.

À la fin de cette fonction les listes ListeCoups et ListeCA seront donc dans le même état qu'avant l'exécution de la fonction OccupePosition(n).

On pourra utiliser la méthode pop qui renvoie le dernier élément d'une liste et le supprime de cette même liste.

```
L = [1, 2, 3, 4, 2, 5, 2]

n = L.pop()
```

Les commandes précédentes affectent la valeur 2 à la variable n, la liste L étant ensuite : [1,2,3,4,2,5].

- 6.3 Écrire une fonction TestePosition d'argument un entier n (indice d'une case) qui :
 - occupe la position d'indice n.
 - · vérifie si la situation est critique.

Si tel est le cas,

- la fonction vérifiera si 63 cases sont occupées et dans ce cas renverra True pour indiquer que la recherche est terminée.
- Si les 63 cases ne sont pas occupées, la fonction libérera la case d'indice n et renverra False.

Dans le cas contraire,

- la fonction vérifiera, à l'aide de la fonction TestePosition(k), toutes les cases d'indice k jouables après la case d'indice n. On prendra garde à affecter une variable locale avec la liste ListeCA[n] puisque celle-ci risque d'être modifiée lors des appels suivants.
- La fonction retournera True dès qu'un appel à TestePosition(k) retourne True ou libérera la case d'indice n et retournera False si tous les appels à TestePosition(k) retournent False.
- 7. Afin de réduire notablement la complexité temporelle du programme on part du principe qu'il faut tester en priorité les cases ayant le moins de cases permises possible. On appellera valuation d'une case d'indice n le nombre de cases permises pour cette case.
 - 7.1 Écrire une fonction valuation qui prend comme argument un indice n de case en entrée et renvoie la valuation de cette case.
 - 7.2 Écrire une fonction Fusion qui prend comme argument deux listes A et B constituées chacune d'entiers naturels entre 0 et 63 (A et B sont donc des listes d'indice de cases); on suppose que ces listes, A et B sont triées par ordre croissant de valuation de leurs éléments; la fonction Fusion(A,B) retourne alors comme valeur la liste fusionnée de tous les éléments de A et B triée par ordre croissant de valuation de ses éléments.

- 7.3 Écrire une fonction TriFusion qui prend comme argument une liste L d'entiers compris entre 0 et 63, a priori non supposée triée par valuation croissante de ses éléments, et qui retourne comme valeur la liste de tous les éléments de L triée par valuation croissante de ses éléments.
- 7.4 Modifier la fonction TestePosition pour qu'elle agisse ainsi que l'on a décidé en début de question.

EXERCICE 2.

1. Soit
$$A = \begin{pmatrix} 0 & 1 \\ y - 4 & 2x \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}).$$

Déterminer une condition nécessaire et suffisante pour que la matrice A soit diagonalisable dans $\mathcal{M}_2(\mathbb{R})$.

- 2. On note $E_1=\{u\in\mathbb{R}_+,\ u^2\notin\mathbb{N}\}$ et E_2 son complémentaire dans \mathbb{R}_+ . Prouver que E_2 est un ensemble dénombrable.
- 3. Soient (Ω, \mathscr{A}) un espace probabilisable et f l'application de \mathbb{R}_+ dans \mathbb{R} définie par :

$$\forall u \in \mathbb{R}_+, f(u) = \begin{cases} 0 & \text{si } u^2 \notin \mathbb{N} \\ \frac{\lambda}{2^{u^2}} & \text{sinon} \end{cases}$$

Déterminer $\lambda \in \mathbb{R}$ pour qu'il existe une probabilité \mathbb{P} tel que f soit la loi de probabilité d'une variable aléatoire X définie sur Ω et à valeurs dans \mathbb{R}_+ .

Préciser $X(\Omega)$.

- 4. Déterminer $X^2(\Omega)$ et la loi de probabilité de X^2 .
- 5. Déterminer l'espérance $\mathcal{E}(X^2)$ de la variable aléatoire X^2 .
- 6. Déterminer la fonction génératrice de la variable aléatoire X^2 .

Retrouver alors la valeur de $E(X^2)$ obtenue à la question précédente.

7. Soit Y une variable aléatoire définie sur Ω , indépendante de la variable aléatoire X et suivant la loi :

$$\forall u \in \mathbb{R}_+, \ \mathbb{P}(Y = u) = \begin{cases} 0 & \text{si } u \notin \mathbb{N} \\ \frac{1}{2^{u+1}} & \text{sinon} \end{cases}$$

Soit alors Z la variable aléatoire définie sur Ω par : $Z = X^2 + Y$.

Déterminer la fonction génératrice de Z. En déduire sa loi de probabilité.

8. Déterminer enfin la probabilité pour que la matrice $A=\begin{pmatrix}0&1\\Y-4&2X\end{pmatrix}\in\mathscr{M}_2(\mathbb{R})$ soit diagonalisable.

EXERCICE 3. On pose, lorsque cela est possible, $f(x) = \int_{1}^{+\infty} \frac{dt}{t^x \sqrt{t^2 - 1}}$.

- 1. Déterminer l'ensemble de définition I de f.
- 2. En justifiant son existence, calculer $\int_0^{+\infty} \frac{\mathrm{d}x}{\mathrm{e}^x + \mathrm{e}^{-x}}$.
- Calculer f(1). (On pourra utiliser l'application φ: u ∈ R^{*}₊ → φ(u) = ch(u)).
- **4.** Calculer f(2). (On pourra remarquer que la dérivée de $x \longmapsto \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)}$ est égale à $x \longmapsto \frac{1}{\operatorname{ch}^2(x)}$)
- 5. Vérifier que f est positive sur I.
- 6. Montrer que f est décroissante sur I.
- 7. Prouver que f est de classe C^1 sur I et préciser l'expression de f'(x).

Retrouver alors le résultat de la question précédente.

8. Soit $x \in I$. Démontrer la relation :

$$f(x+2) = \frac{x}{x+1} f(x)$$

On pourra effectuer, en la justifiant, une intégration par parties.

- 9. Soit $p \in \mathbb{N}^*$. Donner l'expression de f(2p) à l'aide de factorielles.
- 10. Pour tout réel x strictement positif, on pose :

$$\phi(x) = x f(x) f(x+1)$$

Prouver que $\phi(x+1) = \phi(x)$.

Calculer $\phi(n)$ pour tout entier naturel n non nul.

- 11. En utilisant la question précédente, déterminer un équivalent simple de f(x) lorsque x tend vers 0 par valeurs supérieures.
- 12. Vérifier que : $\forall n \in \mathbb{N}^*$, $f(n) f(n+1) = \frac{\pi}{2n}$.

En déduire que $\forall n \in \mathbb{N}^*, f(n) \underset{n \to +\infty}{\sim} \sqrt{\frac{\pi}{2n}}$.

- 13. En utilisant des parties entières, prouver que : $f(x) \underset{x \to +\infty}{\sim} \sqrt{\frac{\pi}{2x}}$
- 14. Déduire des questions précédentes le tableau des variations de f sur I et tracer sa courbe représentative dans un repère orthonormé.

6

15. Prouver que la fonction ϕ est constante sur \mathbb{R}_+^* .

EXERCICE 4.

Dans tout l'exercice, pour tout entier naturel k, on identifie polynôme de $\mathbb{R}_k[X]$ et fonction polynomiale associée pour la structure d'espace vectoriel normé.

- 1. Soit P un élément de $\mathbb{R}[X]$ unitaire (le terme de plus haut degré de P est égal à 1).
 - 1.1 Soit $\alpha \in \mathbb{R}$.

Montrer que : $\forall z \in \mathbb{C}, |z - \alpha| \ge |\text{Im}(z)|$.

1.2 On suppose dans cette question que P est scindé sur \mathbb{R} .

En utilisant une factorisation de P, montrer que :

$$\forall z \in \mathbb{C}, |P(z)| \ge |\text{Im}(z)|^{\text{deg}(P)}$$

où deg(P) désigne le degré du polynôme P.

- 1.3 On prend dans cette question $P(X) = X^3 + 1$.
 - (a) Donner une factorisation de P dans $\mathbb{C}[X]$.
 - (b) Trouver $z_0 \in \mathbb{C}$ tel que : $|P(z_0)| < |\operatorname{Im}(z_0)|^{\operatorname{deg}(P)}$
- 1.4 On suppose dans cette question que : $\forall z \in \mathbb{C}, |P(z)| \ge |\operatorname{Im}(z)|^{\operatorname{deg}(P)}$

Montrer que toutes les racines de P sont réelles. En déduire que P est scindé sur \mathbb{R} .

- 1.5 Enoncer clairement le résultat obtenu.
- 2. Soient q un entier naturel non nul et $(A_n)_{n\in\mathbb{N}}$ une suite de matrices trigonalisables de $\mathscr{M}_q(\mathbb{R})$ qui converge vers une matrice A.

On appelle pour tout entier naturel n, P_n le polynôme caractéristique de A_n et P celui de la matrice A.

- 2.1 Donner le degré et le coefficient dominant de P_n .
- **2.2** Prouver que : $\forall x \in \mathbb{R}$, $\lim_{n \to +\infty} P_n(x) = P(x)$.
- 2.3 En déduire que A est trigonalisable.
- 2.4 Qu'en conclut-on pour l'ensemble des matrices trigonalisables de $\mathcal{M}_q(\mathbb{R})$?
- 3. On prend dans cette question q=2 et $A_n=\begin{pmatrix} 1-\frac{1}{n} & 1-\frac{\sin n}{n} \\ 0 & 1+\frac{1}{n} \end{pmatrix}$. Où n est un entier non nul.
 - 3.1 Déterminer $A = \lim_{n \to +\infty} A_n$.
 - **3.2** Etudier la diagonalisabilité des matrices A_n et A dans $\mathcal{M}_2(\mathbb{R})$.
 - 3.3 Conclure.