SESSION 2002 MAT

BANQUE D'EPREUVES G2E

MATHEMATIQUES

Durée: 4 heures

Note importante: il sera tenu le plus grand compte des qualités de soin et de rédaction apportées par les candidats.

Problème 1 (8 points)

On considère une suite de variables aléatoires $(\xi_n)_{n\geq 0}$ à valeurs dans l'ensemble $\{1,2,3,4\}$ avec les propriétés qui suivent.

La loi de ξ_0 est donnée par

$$\mathbf{P}(\xi_0 = j) = p_i^0$$

pour j=1,2,3,4, où les p_j^0 sont précisés par la suite.

Pour chaque $n \geq 0$, on se donne les probabilités conditionnelles

$$\mathbf{P}(\xi_{n+1} = j \mid \xi_n = k) = p_{jk}$$

pour j, k prenant les valeurs 1, 2, 3, 4, où la matrice p_{jk} vaut

$$P = \begin{pmatrix} 0 & 0 & 1/2 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

dans toute la suite.

Ainsi, par exemple $\mathbf{P}(\xi_{n+1} = 1 \mid \xi_n = 3) = 1/2$.

1. La loi de ξ_0 étant donnée par la table

ξ_0	1	2	3	4
Р	1/4	0	1/2	1/4

dresser celle de ξ_1 , puis celle de ξ_2 .

2. Montrer que 0 et 1 sont valeurs propres de la matrice P et préciser les sous-espaces propres correspondants en donnant une base de chacun d'eux.

3. Quelle doit être la loi de ξ_0 pour que les ξ_n aient toutes la même loi?

4. Montrer que P est diagonalisable sur le corps ${\bf C}$ des nombres complexes.

5. Montrer que pour tout n entier positif, la puissance n-ème de P prend la forme

$$P^n = A + \omega^n B + \omega^{2n} C$$

où l'on a posé $\omega=e^{2i\pi/3}$ et où les matrices $A,\,B,\,C$ ne dépendant pas de n. On demande d'expliciter les matrices $A,\,B$ et C.

6. Etudier le comportement de la suite de variables aléatoires $(\xi_n)_{n\geq 1}$ lorsque la loi de ξ_0 est donnée par la table de la question **1**.

Problème 2 (12 points)

Soient X et Y deux variables aléatoires indépendantes de loi de Poisson de paramètres respectifs a et b.

- 1. Calculer la fonction génératrice de X; en déduire l'espérance et la variance de X.
- **2.** Identifier la loi de la variable aléatoire X + Y.
- 3. Exprimer la probabilité de l'événement (X = Y) comme la somme d'une série numérique.
- 4. Faire de même pour l'événement (|X-Y|=k) où k est un nombre entier positif donné.

On considère l'équation différentielle

$$xy'' + y' - xy = 0$$

et on cherche la solution y de cette équation qui vérifie la condition initiale y(0) = 1, y'(0) = 0.

5. Chercher y comme somme

$$\sum_{n=0}^{\infty} a_n x^n$$

d'une série entière, en montrant d'abord que les coefficients vérifient l'équation de récurrence

$$(n+1)^2 a_{n+1} = a_{n-1}$$

pour $n \geq 1$. On demande de préciser le rayon de convergence de la série obtenue.

6. On définit une fonction I par l'expression intégrale

$$I(x) = \frac{1}{\pi} \int_{-1}^{1} \frac{e^{-tx}}{\sqrt{1-t^2}} dt$$
.

Montrer que I possède les propriétés exigées pour y. On pourra dériver sous le signe intégrale, puis intégrer par parties.

7. En développant e^{-tx} en série, puis en intégrant terme à terme, montrer directement que les fonctions y et I coïncident. On pourra utiliser la formule

$$\int_0^{\pi/2} \sin^{2n} \theta \, d\theta = \frac{\pi}{2} \cdot \frac{(2n)!}{(2^n n!)^2}$$

pour n entier positif.

8. Montrer que

a)
$$\frac{1}{\pi} \int_0^1 \frac{e^{-tx}}{\sqrt{1-t^2}} dt < \frac{1}{2}$$
 si $x > 0$,

b)
$$0 < \frac{1}{\sqrt{1-y}} - 1 < y$$
 si $0 < y < 1/2$.

9. Montrer que

a)
$$\int_0^1 \frac{e^{-tx}}{\sqrt{t}} dt \sim \sqrt{\frac{\pi}{x}} \text{ lorsque } x \text{ tend vers } +\infty.$$

b)
$$\int_0^1 e^{-tx} \sqrt{t} \, dt < \frac{\sqrt{\pi}}{2} \cdot \frac{1}{x^{3/2}} \text{ pour } x > 0.$$

On rappelle que $\int_{-\infty}^{+\infty} e^{-\theta^2} d\theta = \sqrt{\pi}$.

10. Montrer que

$$\int_{-1}^{0} \frac{e^{-tx}}{\sqrt{1-t^2}} dt = \frac{e^x}{\sqrt{2}} \int_{0}^{1} \frac{e^{-\theta x}}{\sqrt{\theta(1-\theta/2)}} d\theta$$

et déduire de ce qui précède que $I(x) \sim e^x/\sqrt{2\pi x}$ lorsque x tend vers l'infini.

11. Donner un équivalent à la probabilité de l'événement (X = Y) lorsque X et Y suivent une loi de Poisson de même paramètre a tendant vers l'infini.