Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire B/L, constituent un échantillon des sujets proposés lors des épreuves orales du concours 2013.

1. SUJETS DE L'OPTION SCIENTIFIQUE

Exercice principal S46

- 1. Question de cours : Énoncer le théorème de la bijection.
- 2.a) Justifier la convergence de l'intégrale $\int_0^{+\infty} e^{-\frac{t^2}{8}} dt$ et en donner la valeur.
- b) Établir l'inégalité stricte : $\int_{1}^{+\infty} e^{-\frac{t^2}{8}} dt > 1$.
- 3. Établir pour tout $n \in \mathbb{N}^*$, l'existence d'un unique réel u_n vérifiant $\int_{\frac{1}{n}}^{u_n} e^{-\frac{t^2}{8}} dt = \frac{1}{n}$.
- 4.a) Établir pour tout $n \in \mathbb{N}^*$, les inégalités : $\left(u_n \frac{1}{n}\right) e^{-\frac{u_n^2}{8}} \leqslant \frac{1}{n} \leqslant \left(u_n \frac{1}{n}\right) e^{-\frac{1}{8n^2}}$.
- b) En déduire que u_n est équivalent à $\frac{2}{n}$ quand n tend vers $+\infty$.
- 5. Trouver un équivalent de la différence $\left(u_n \frac{2}{n}\right)$, quand n tend vers $+\infty$, de la forme $\frac{\alpha}{n^{\beta}}$ où α et β sont des réels, indépendants de n, à déterminer.

Exercice sans préparation S46

Soit X une variable aléatoire à valeurs positives, admettant une densité f et vérifiant la propriété suivante : la variable aléatoire $X + \frac{1}{X}$ possède une espérance mathématique.

- 1. Établir l'inégalité : $E\left(X + \frac{1}{X}\right) \geqslant 2$.
- Montrer que l'inégalité précédente n'est jamais une égalité, mais que E(X + 1/X) peut prendre des valeurs arbitrairement proches de 2.

1. Question de cours : Développement limité d'ordre 1 d'une fonction $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ de classe C^1 . Soit f l'application de \mathbb{R}^2 dans \mathbb{R} définie par : $\forall (x,y) \in \mathbb{R}^2$, $f(x,y) = (2x-y)^2 e^{2x-y}$.

f is a substitution of f is f(x,y) = f(x,y) = f(x,y) = f(x,y) = f(x,y)

- 2.a) Justifier que f est de classe C^1 sur \mathbb{R}^2 et vérifier que : $\forall A \in \mathbb{R}^2$, $\frac{\partial f}{\partial x}(A) + 2\frac{\partial f}{\partial y}(A) = 0$.
- b) Montrer que f possède une infinité de points critiques. Trouver ceux en lesquels f admet un extremum local ou global.
- 3. Soit (α, β) un couple de réels différent de (0, 0) et g une fonction de classe C^1 sur \mathbb{R}^2 , à valeurs réelles vérifiant : $\forall A \in \mathbb{R}^2$, $\alpha \frac{\partial g}{\partial x}(A) + \beta \frac{\partial g}{\partial y}(A) = 0$.

Pour tout couple $(u, v) \in \mathbb{R}^2$, on pose : $h(u, v) = g(\alpha u - \beta v, \beta u + \alpha v)$.

- a) Montrer que $h(u + \varepsilon, v) = h(u, v) + o(\varepsilon)$ (quand ε tend vers 0).
- b) En déduire l'existence d'une fonction φ de classe C^1 sur \mathbb{R} telle que : $\forall (u, v) \in \mathbb{R}^2$, $h(u, v) = \varphi(v)$.
- 4. Montrer que f est la seule fonction de classe C^1 sur \mathbb{R}^2 vérifiant :

$$\begin{cases} \forall A \in \mathbb{R}^2, \frac{\partial f}{\partial x}(A) + 2 \frac{\partial f}{\partial y}(A) = 0 \\ \forall t \in \mathbb{R}, f(0, t) = t^2 e^{-t} \end{cases}$$

Exercice sans préparation S51

Soit X et Y deux variables aléatoires indépendantes, définies sur un espace probabilisé (Ω, A, P) et de même loi $\mathcal{N}(0, 1)$.

On pose : $M = \begin{pmatrix} 0 & X & 0 \\ Y & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

- 1. Calculer P(X = Y) et P(XY > 0).
- Trouver la probabilité que la matrice M soit diagonalisable.

Question de cours : Inégalité des accroissements finis pour une fonction réelle d'une variable réelle.

Soit f une fonction définie et continue sur]0,1], à valeurs dans \mathbb{R} , telle que l'intégrale $\int_0^1 f(t) dt$ soit convergente.

Pour tout entier $n \ge 1$, on pose : $u_n(f) = \sum_{k=1}^n f\left(\frac{k}{n}\right) - n \int_0^1 f(t) dt$.

- 2.a) Proposer une interprétation de $\frac{u_n(f)}{n}$ en terme d'aires et indiquer sa limite lorsque n tend vers $+\infty$, dans le cas où f admet un prolongement continu au segment [0,1].
- b) On suppose dans cette question que f est la fonction $t \mapsto t^2$.

Calculer $u_n(f)$ et vérifier que la suite $(u_n(f))_{n\in\mathbb{N}^*}$ est bornée.

- 3. Dans cette question, f est une fonction continue positive et croissante sur [0,1].
- a) Justifier la convergence de l'intégrale $\int_{0}^{1} f(t) dt$.
- b) Montrer que la suite (u_n(f))_{n∈N*} est positive et majorée.
- En utilisant l'inégalité des accroissements finis, montrer que si f admet un prolongement de classe C¹ au segment [0, 1], alors la suite (u_n(f))_{n∈N∗} est bornée.
- 5. Pour tout réel α , on note f_{α} la fonction définie sur]0,1] par $f_{\alpha}(t)=t^{\alpha}$.

Déterminer pour quelles valeurs de α l'intégrale $\int_0^1 f_{\alpha}(t) dt$ est convergente et la suite $(u_n(f_{\alpha}))_{n \in \mathbb{N}^*}$ bornée.

Exercice sans préparation S52

Soit E un espace euclidien dont le produit scalaire est noté \langle , \rangle . On note $\mathcal{L}(E)$ l'ensemble des endomorphismes de E et $\mathcal{A}(E)$ l'ensemble des éléments f de $\mathcal{L}(E)$ qui vérifient :

$$\forall (x, y) \in E^2, \langle f(x), y \rangle = -\langle x, f(y) \rangle.$$

- Que peut-on dire de la matrice d'un élément f ∈ A(E) dans une base orthonormée de E?
- 2. On note C(E) l'ensemble des endomorphismes g de E qui commutent avec tous les éléments de A(E), c'està-dire qui vérifient :

$$\forall f \in \mathcal{A}(E), f \circ g = g \circ f.$$

- a) Montrer que lorsque la dimension de E est égale à 2, C(E) est un plan vectoriel de L(E) qui contient A(E).
- b) Trouver C(E) lorsque la dimension de E est strictement supérieure à 2.

1. Question de cours : Rappeler la définition d'un endomorphisme symétrique d'un espace euclidien. Que peut-on dire de sa matrice dans une base orthonormale?

L'espace vectoriel \mathbb{R}^5 est muni du produit scalaire usuel, noté $\langle \, , \rangle$, pour lequel la base canonique est orthonormale.

$$\text{Soit}\, M = \begin{pmatrix} 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \text{ et } \varphi \text{ l'endomorphisme de } \mathbb{R}^5 \text{ dont } M \text{ est la matrice dans la base canonique.}$$

- 2.a) Montrer que la matrice M n'est pas inversible.
- b) Montrer que l'endomorphisme φ² = φ ο φ est symétrique.
- 3.a) Montrer que pour tout couple (x, y) de vecteurs de \mathbb{R}^5 , on a : $\langle \varphi(x), y \rangle = -\langle x, \varphi(y) \rangle$.
- b) Montrer que les valeurs propres de l'endomorphisme φ^2 sont négatives ou nulles.
- c) En déduire que M n'est pas diagonalisable.
- 4.a) Montrer que le noyau de φ et l'image de φ sont deux sous-espaces supplémentaires orthogonaux de R⁵.
- b) Montrer que si λ est une valeur propre non nulle de φ^2 et x un vecteur propre de φ^2 associé à λ , alors les deux vecteurs x et $\varphi(x)$ engendrent un plan de \mathbb{R}^5 qui est stable par l'endomorphisme φ .
- c) Établir l'existence de deux réels non nuls α et β , et d'une base orthonormale de \mathbb{R}^5 dans laquelle la matrice de φ est :

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \alpha & 0 & 0 \\ 0 & -\alpha & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \beta \\ 0 & 0 & 0 & -\beta & 0 \end{pmatrix}.$$

Exercice sans préparation S54

Soit X une variable aléatoire définie sur un espace probabilisé (Ω, A, P) qui suit la loi uniforme sur]-1,+1[.

- Trouver toutes les fonctions φ définies, continues et strictement monotones sur]-1,+1[telles que la variable aléatoire Y = φ(X) suive la loi exponentielle de paramètre 1.
- 2. En déduire une fonction paire ψ définie sur] -1,+1[telle que la variable aléatoire $\psi(X)$ suive aussi la loi exponentielle de paramètre 1.

- Question de cours : Rappeler l'énoncé du théorème de la limite centrée.
- Soit (U_n)_{n∈N*} et (V_n)_{n∈N*} deux suites de variables aléatoires définies sur un même espace probabilisé (Ω, A, P) et convergeant en probabilité vers 0.
- a) Établir pour tout $\varepsilon > 0$, l'inégalité : $P(|U_n + V_n| \ge \varepsilon) \le P(|U_n| \ge \varepsilon/2) + P(|V_n| \ge \varepsilon/2)$.
- b) En déduire que la suite (U_n + V_n)_{n∈N*} converge en probabilité vers 0.

Dans la suite de l'exercice, θ et ρ désignent deux paramètres réels inconnus , avec $\rho > 0$.

Soit X une variable aléatoire admettant pour densité la fonction $f_{\theta,\rho}$ définie par :

$$\forall x \in \mathbb{R}, f_{\theta,\rho}(x) = \frac{1}{2\sqrt{2\pi}} \left(\exp\left(-\frac{1}{2}(x-\theta-\rho)^2\right) + \exp\left(-\frac{1}{2}(x-\theta+\rho)^2\right) \right)$$
, où exp désigne la fonction exponentielle.

- 3.a) Montrer que X admet un moment d'ordre 4.
- b) Calculer l'espérance de X et montrer que la variance de X est égale à $1 + \rho^2$.
- Soit (X_n)_{n∈N*} une suite de variables aléatoires mutuellement indépendantes de même loi que X.

On pose pour tout
$$n \in \mathbb{N}^*$$
: $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ et $R_n = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2 - 1$.

- a) Montrer que (R_n)_{n∈N*} est une suite convergente d'estimateurs de ρ². Ces estimateurs sont-ils sans biais ?
- b) Proposer un intervalle de confiance de θ utilisable pour de grands échantillons de la loi de X.

Exercice sans préparation S55

Soit $n \in \mathbb{N}^*$ et a et b deux réels tels que $ab \neq 0$. On note M(a,b) la matrice de $\mathcal{M}_{n+1}(\mathbb{R})$ donnée par :

$$M(a,b) = \begin{pmatrix} 0 & a & a & \cdots & a \\ b & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ b & 0 & 0 & \cdots & 0 \end{pmatrix}.$$

- 1.a) Calculer $M(a, b)^2$
- b) Montrer que $M(a, b)^2$ est diagonalisable et trouver ses valeurs propres.
- 2. Montrer que $M(c,d)=\begin{pmatrix} 0 & c & c & \cdots & c \\ d & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ d & 0 & 0 & \cdots & 0 \end{pmatrix}$ est semblable à M(a,b) si et seulement si ab=cd.

- Question de cours : Définition et propriétés des endomorphismes symétriques d'un espace euclidien.
- Dans cette question, E désigne l'espace vectoriel R³ que l'on munit du produit scalaire usuel pour lequel la base canonique (e₁, e₂, e₃) est orthonormée.

Soit u l'endomorphisme de \mathbb{R}^3 défini par :

$$\forall (x_1, x_2, x_3) \in \mathbb{R}^3, u(x_1, x_2, x_3) = (x_1 + x_2 + 2x_3, x_1 - x_2, 2x_1 + 2x_3).$$

- a) Trouver la matrice de u dans la base canonique et en déduire que u est symétrique.
- b) Déterminer une base de Ker u, puis montrer que $(u(e_1), u(e_2))$ est une base orthogonale de Im u.
- c) Déterminer la matrice du projecteur orthogonal sur Im u dans la base canonique de R³.

Dans la suite de l'exercice, (E, \langle , \rangle) est un espace euclidien et on note || || la norme euclidienne associée au produit scalaire \langle , \rangle .

- Soit F un sous-espace vectoriel de E, x un vecteur de E et y = p_F(x) la projection orthogonale de x sur F.
 Montrer que pour tout z ∈ F, on a : ||x z|| ≥ ||x y||, avec égalité si et seulement si z = y.
- Soit u un endomorphisme symétrique de (E, (,)). On note p le projecteur orthogonal sur Im u.
- a) Montrer que Ker u et Im u sont supplémentaires et orthogonaux.
- b) Soit $x \in E$. Justifier l'existence d'un vecteur $y_0 \in E$ tel que $u(y_0) = p(x)$ et trouver parmi les vecteurs $y \in E$ vérifiant u(y) = p(x), celui qui a la plus petite norme; on le note v(x).
- c) Montrer que v est linéaire, puis calculer $u \circ v$ et $u \circ v \circ u$.
- d) Calculer p(x) et v(x) pour x = (1, 1, 1), lorsque u est l'endomorphisme de \mathbb{R}^3 de la question 2.

Exercice sans préparation S60

Soit X une variable aléatoire possédant une densité de probabilité continue sur \mathbb{R} et nulle hors de l'intervalle]-1,+1[.

- Montrer que X possède une variance, qui est strictement comprise entre 0 et 1.
- $2.\ {\rm Montrer\ que\ toute\ valeur\ de\ l'intervalle\ ouvert\ }]0,1[\ {\rm est\ effective ment\ possible\ pour\ la\ variance\ de\ }X.$

- Question de cours : Définition de la limite d'une suite de nombres réels.
- Soit (u_n)_{n∈N*} une suite réelle bornée. On pose pour tout n ∈ N* : v_n = sup(u_k, k ≥ n).
- a) Montrer que la suite (v_n)_{n∈N*} est convergente.
- b) On suppose que la suite $(u_n)_{n\in\mathbb{N}^*}$ est positive et que $\lim_{n\to+\infty}v_n=0$. Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ est convergente avec $\lim_{n\to\infty}u_n=0$.

Soit $(X_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires indépendantes définies sur un même espace probabilisé (Ω, A, P) suivant toutes la loi géométrique de paramètre $p \in]0,1[$.

On note pour tout $n \in \mathbb{N}^*$: $S_n = \sum_{i=1}^n X_i$.

- 3. Soit $\varepsilon > 0$. Déterminer $\lim_{n \to +\infty} P\left(\left|\frac{S_n}{n} \frac{1}{p}\right| > \varepsilon\right)$.
- 4.a) Montrer que pour tout entier $k \ge n$, on a : $P(S_n = k) = \binom{k-1}{n-1} p^n (1-p)^{k-n}$.
- b) Que vaut $P(S_n = k)$ lorsque k < n?
- Soit f: [1,+∞[→ R une fonction de classe C¹, bornée et de dérivée bornée sur [1,+∞[.
- a) Montrer que pour tout $x \in]0,1]$, la série $\sum_{k\geqslant 0} f\left(1+\frac{k}{n}\right) \binom{k+n-1}{n-1} (1-x)^k$ est convergente.

On pose alors pour tout $x \in]0,1]$: $K_n(x) = x^n \sum_{k=0}^{+\infty} f\left(1 + \frac{k}{n}\right) {k+n-1 \choose n-1} (1-x)^k$

- b) Établir l'existence de $E\left(f\left(\frac{S_n}{n}\right)\right)$ et exprimer $E\left(f\left(\frac{S_n}{n}\right)\right)$ en fonction de $K_n(p)$.
- c) Soit ε > 0. Montrer qu'il existe deux réels A et B tels que pour tout n ∈ N*, on a :

$$\left| E\left(f\left(\frac{S_n}{n}\right) \right) - f\left(\frac{1}{p}\right) \right| \leqslant A \, \varepsilon + B \, P\left(\left| \frac{S_n}{n} - \frac{1}{p} \right| > \varepsilon \right) \, .$$

d) Soit $t \in [1, +\infty[$ et $(u_n)_{n \in \mathbb{N}^*}$ la suite définie par : $\forall n \in \mathbb{N}^*, u_n = \left|K_n\left(\frac{1}{t}\right) - f(t)\right|$. Montrer que $\lim_{n \to +\infty} u_n = 0$.

Exercice sans préparation S62

Soit $E = \mathbb{R}_3[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 3.

On pose :
$$F = \{P \in E, P(0) = P(1) = P(2) = 0\}, G = \{P \in E, P(1) = P(2) = P(3) = 0\}$$

et $H = \{P \in E, P(X) = P(-X)\}.$

Montrer que $E = F \oplus G \oplus H$.

1. Question de cours : Théorème de transfert.

Soit p un réel vérifiant $\frac{1}{2} . On pose <math>q = 1 - p$.

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires réelles indépendantes, définies sur le même espace probabilisé (Ω, \mathcal{A}, P) . On suppose que X_0 est la variable certaine de valeur 0 et que pour tout $n \in \mathbb{N}^*$, la variable aléatoire X_n suit la loi binomiale de paramètres n et p.

Pour tout $n \in \mathbb{N}$ et pour tout t réel, on pose : $Y_n = 2X_n - n$ et $g_n(t) = E(e^{-tY_n})$, où E désigne l'espérance..

- 2. Montrer que pour tout $n \in \mathbb{N}$ et pour tout $t \in \mathbb{R}_+$, on a : $g_n(t) = (p e^{-t} + q e^t)^n$.
- 3.a) Établir pour tout $n \in \mathbb{N}$ et pour tout $t \in \mathbb{R}_+$, l'inégalité : $P(Y_n \leq 0) \leq g_n(t)$.
- b) Montrer qu'il existe $\alpha \in]0,1[$ (indépendant de n) tel que pour tout $n \in \mathbb{N}$, on a : $P(Y_n \leqslant 0) \leqslant \alpha^n$.
- 4. Dans cette question, soit $n \in \mathbb{N}^*$ fixé. On pose $Z_0 = 0$ et $Z_n = \min(Y_0, Y_1, \dots, Y_n)$.
- a) Déterminer $Z_n(\Omega)$. Calculer $P(Z_n = -n)$.
- b) Pour tout $k \in \llbracket 0, n-1 \rrbracket$, on pose : $A_k = \bigcup_{j=k+1}^n [Y_j \leqslant 0]$. Montrer que l'on a : $P(A_k) \leqslant \frac{\alpha^{k+1}}{1-\alpha}$.
- c) Soit $k \in \llbracket 0, n-1 \rrbracket$ et $r \in \llbracket -n, 0 \rrbracket$. Établir les inégalités :

$$P(Z_n=r)\leqslant P\big(A_k\cap (Z_n=r)\big)+P(Z_k=r) \ \ \text{et} \ \ E(Z_n)\geqslant -n\alpha^n+E(Z_{n-1})\,.$$

Montrer que la suite (E(Z_n))_{n∈N*} est convergente.

Exercice sans préparation S63

Soit f un endomorphisme de \mathbb{R}^3 et soit A la matrice de f dans la base canonique de \mathbb{R}^3 . On suppose que f n'est pas diagonalisable et qu'il vérifie : $(f - \mathrm{id}) \circ (f^2 + \mathrm{id}) = 0$.

- Montrer que Ker(f − id) et Ker(f² + id) sont supplémentaires.
- 2. Montrer que A est semblable à $\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

Question de cours : Définition des valeurs propres et vecteurs propres d'un endomorphisme.

Soit E un espace vectoriel de dimension $n \in \mathbb{N}^*$. On rappelle qu'une forme linéaire de E est une application linéaire de E dans \mathbb{R} . On note $E^* = \mathcal{L}(E, \mathbb{R})$ l'espace vectoriel des formes linéaires de E.

- Déterminer la dimension de E*.
- 3. Dans cette question uniquement, E est l'espace vectoriel $\mathbb{R}_p[X]$ des polynômes à coefficients réels de degré inférieur ou égal à p ($p \in \mathbb{N}$).

Soit f et g deux éléments de E^* définis par : pour tout $P \in E$, f(P) = P(0) et $g(P) = \int_0^1 P(t)dt$.

Déterminer une base de Ker(f) et une base de Ker(g). Les formes linéaires f et g sont-elles proportionnelles?

- Soit f et g deux éléments non nuls de E* tels que Ker(f) ⊂ Ker(g).
- a) Montrer que Ker(f) = Ker(g).
- b) Soit $x_0 \notin \text{Ker}(f)$. On pose : $h = g(x_0)f f(x_0)g$. Montrer que h = 0. Conclusion.
- Dans cette question, on considère une matrice A ∈ M₃(R). On identifie A et l'endomorphisme de R³ ayant pour matrice A dans la base canonique de R³.

Un sous-espace vectoriel F de \mathbb{R}^3 est dit stable par A lorsque pour tout $X \in F$ on a $AX \in F$.

- a) Soit $X \in F$ avec $X \neq 0$. Montrer que Vect(X) est stable par A si et seulement si X est vecteur propre de A.
- b) Soit \mathcal{P} le plan de \mathbb{R}^3 d'équation ax + by + cz = 0 avec $(a, b, c) \neq (0, 0, 0)$ et L la forme linéaire de \mathbb{R}^3 définie par L(x, y, z) = ax + by + cz.

Montrer que \mathcal{P} est stable par A si et seulement si $Ker(L) \subset Ker(LA)$.

En déduire que \mathcal{P} est stable par A si et seulement si $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ est un vecteur propre de tA (transposée de A).

Exercice sans préparation S74

Soit X une variable aléatoire définie sur un espace probabilisé (Ω, A, P) suivant la loi normale d'espérance m et de variance égale à 1. Soit b un réel strictement positif fixé.

- Montrer que ∀a ∈ ℝ, l'application a → P(a < X < a + b) admet un maximum atteint en un point a₀ que l'on déterminera.
- 2. Exprimer la valeur de ce maximum à l'aide de la fonction de répartition de la loi normale centrée réduite.
- 3. Interpréter géométriquement le résultat obtenu.

Pour n entier supérieur ou égal à 2, on munit \mathbb{R}^n du produit scalaire canonique noté \langle , \rangle et de la norme euclidienne associée notée $\| . \|$.

Soit \mathcal{F} l'espace vectoriel des fonctions définies sur \mathbb{R}^n et à valeurs réelles. On pose :

$$P = \{f : \mathbb{R}^n \longrightarrow \mathbb{R}; \forall x \in \mathbb{R}^n, f(-x) = f(x)\} \text{ et } \mathcal{I} = \{f : \mathbb{R}^n \longrightarrow \mathbb{R}; \forall x \in \mathbb{R}^n, f(-x) = -f(x)\}.$$

Enfin, on note \mathcal{H} l'ensemble des fonctions $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ continues sur \mathbb{R}^n et telles que, pour tous vecteurs u et v de \mathbb{R}^n vérifiant $\langle u, v \rangle = 0$, on a : f(u+v) = f(u) + f(v).

- 1. Question de cours : Théorème de Pythagore.
- Établir les relations : F = P ⊕ I et H = (H ∩ P) ⊕ (H ∩ I).
- 3. Soit $\lambda \in \mathbb{R}$. Déterminer $\lim_{n \to +\infty} \frac{\lfloor n\lambda \rfloor}{n}$, où $\lfloor n\lambda \rfloor$ désigne la partie entière du réel $n\lambda$.
- 4. Soit $g \in \mathcal{H} \cap \mathcal{I}$.
- a) En exploitant l'hypothèse n ≥ 2, montrer que pour tout vecteur x ∈ Rⁿ, on a : g(2x) = 2g(x).
- b) Montrer que pour tout vecteur $x \in \mathbb{R}^n$ et pour tout $r \in \mathbb{Q}$, on a : g(rx) = rg(x).

En déduire que pour tout $\lambda \in \mathbb{R}$, on a : $g(\lambda x) = \lambda g(x)$.

- c) Montrer que la fonction g est linéaire.
- 5. Soit $h \in \mathcal{H} \cap \mathcal{P}$.
- a) Soit x et y deux vecteurs de Rⁿ tels que ||x|| = ||y||. Calculer (x y , x + y) et en déduire que h(x) = h(y).
- b) Justifier l'existence d'une fonction $\varphi : \mathbb{R}_+ \longrightarrow \mathbb{R}$ telle que pour tout vecteur $x \in \mathbb{R}^n$, on $a : h(x) = \varphi(\|x\|^2)$.
- c) On admet que φ est continue. Montrer que pour tous réels positifs s et t, on a : $\varphi(s+t) = \varphi(s) + \varphi(t)$.
- d) Établir alors l'existence d'une constante c telle que pour tout $x \in \mathbb{R}^n$, on a : $h(x) = c||x||^2$.
- En déduire la forme générale de toute fonction f ∈ H.

Exercice sans préparation S79

Soit $X_1, X_2, ..., X_p$ $(p \ge 2)$ des variables aléatoires indépendantes définies sur un espace probabilisé (Ω, A, P) telles que pour tout $i \in [1, p]$, X_i suit la loi de Poisson de paramètre $\lambda_i > 0$.

On pose pour tout $p \ge 2$: $S_p = \sum_{i=1}^{p} X_i$.

- 1. Soit $n \in \mathbb{N}$. Déterminer la loi conditionnelle du vecteur $(X_1, X_2, \dots, X_{p-1})$ sachant $(S_p = n)$.
- Soit n∈ N. Exprimer l'espérance conditionnelle E(X₁|X₁ + X₂ = n) en fonction de n, λ₁ et λ₂.

1. Question de cours : Condition nécessaire et suffisante pour qu'une matrice soit diagonalisable.

Soit E un \mathbb{C} -espace vectoriel de dimension n $(n \ge 2)$ et φ un endomorphisme de E.

On note id_E l'endomorphisme identité de E, 0_E l'endomorphisme nul de E et on pose : $\varphi^0 = id_E$ et pour tout $k \in \mathbb{N}^*$, $\varphi^k = \varphi \circ \varphi^{k-1}$.

On dit que φ est cyclique s'il existe un vecteur $x_0 \in E$ tel que la famille $(x_0, \varphi(x_0), \dots, \varphi^{n-1}(x_0))$ soit une base de E.

- On suppose que φⁿ = 0_E et φⁿ⁻¹ ≠ 0_E.
- a) Montrer que φ est cyclique.
- b) Déterminer les valeurs propres de φ . L'endomorphisme φ est-il diagonalisable?
- 3. On suppose que φ est cyclique. Soit ψ un endomorphisme de E tel que $\varphi \circ \psi = \psi \circ \varphi$.

En utilisant une base du type $(x_0, \varphi(x_0), \dots, \varphi^{n-1}(x_0))$, établir l'existence d'un polynôme $P \in \mathbb{C}[X]$ tel que $\psi = P(\varphi)$.

4. On suppose que φ est cyclique. On note x_0 un vecteur de E vérifiant les deux conditions suivantes :

$$(x_0, \varphi(x_0), \dots, \varphi^{n-1}(x_0))$$
 est une base de E et $\varphi^n(x_0) = x_0$.

- a) Montrer que $\varphi^n = id_E$. En déduire que φ est bijectif.
- b) Quelles sont les valeurs propres possibles de φ ?
- c) Montrer que φ est diagonalisable.

Exercice sans préparation S82

Soit X une variable aléatoire qui suit une loi exponentielle de paramètre $\lambda > 0$. On pose : $Y = \lfloor X \rfloor$ et Z = X - Y.

- Montrer que Y est une variable aléatoire et déterminer sa loi. Que peut-on dire de Y + 1?
- Montrer que Z est une variable aléatoire et déterminer sa loi.
- 3. Les variables aléatoires Y et Z sont-elles indépendantes ?

1. Question de cours : Donner deux conditions suffisantes et non nécessaires de diagonalisabilité d'une matrice.

Soit n un entier de \mathbb{N}^* et $A = (a_{i,j})_{1 \leq i,j \leq n}$, la matrice de $\mathcal{M}_n(\mathbb{R})$ telle que pour tout $(i,j) \in [1,n]^2$, on a : $a_{i,j} = \min(i,j)$.

2.a) Soit $L = (l_{i,j})_{1 \leq i,j \leq n}$ une matrice triangulaire inférieure et $U = (u_{i,j})_{1 \leq i,j \leq n}$ une matrice triangulaire supérieure. On pose : $M = LU = (m_{i,j})_{1 \leq i,j \leq n}$.

Montrer que pour tout $(i,j) \in [1,n]^2$, on a : $m_{i,j} = \sum_{k=1}^{\min(i,j)} l_{i,k} u_{k,j}$.

- b) En déduire l'existence d'une matrice triangulaire supérieure T telle que $A={}^tTT$.
- c) Montrer que les matrices A et T sont de même rang.
- d) Justifier que A est diagonalisable et déduire des questions précédentes que ses valeurs propres sont toutes strictement positives.
- e) Justifier l'inversibilité de A et déterminer son inverse.
- 3. Soit $p \in]0,1[$ et $X_1,X_2,\ldots,X_n,$ n variables aléatoires définies sur un espace probabilisé (Ω,\mathcal{A},P) , indépendantes et de même loi de Bernoulli de paramètre p.

On pose pour tout $k \in [1, n]$, $S_k = \sum_{i=1}^k X_i$.

On note Σ_S la matrice de variance-covariance du vecteur aléatoire (S_1, S_2, \dots, S_n) .

- a) Montrer que les valeurs propres de Σ_S sont toutes positives.
- b) Pour tout $(i, j) \in [1, n]^2$, déterminer $Cov(S_i, S_j)$.
- c) Exprimer Σ_S en fonction de A.

Exercice sans préparation S84

- 1. Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par : pour tout $n\in\mathbb{N}^*$, $u_n=\sum_{k=1}^n\frac{1}{n+k}$. Déterminer $\lim_{n\to+\infty}u_n$.
- 2. Soit $(v_n)_{n\in\mathbb{N}^*}$ la suite définie par : pour tout $n\in\mathbb{N}^*$, $v_n=\sum_{k=1}^n\ln\left(1+\frac{1}{n+k}\right)$. Déterminer $\lim_{n\to+\infty}v_n$.

1. Question de cours : Définition de la convergence d'une série réelle.

Pour tout $n \in \mathbb{N}^*$, on pose : $u_n(x) = \frac{x^n}{n}$.

- 2.a) Déterminer l'ensemble des réels x pour lesquels la suite $(u_n(x))_{n\geq 1}$ converge vers 0.
- b) Déterminer l'ensemble des réels x pour lesquels la série $\sum_{n\geqslant 1}u_n(x)$ est absolument convergente.
- 3.a) Soit $x \in [-1,1[$. Calculer pour tout $k \in \mathbb{N}^*, \int_0^x t^{k-1} dt$ et en déduire que si $n \in \mathbb{N}^*$, on a :

$$\sum_{k=1}^{n} u_k(x) = -\ln(1-x) - \int_0^x \frac{t^n}{1-t} dt.$$

- b) Montrer que si $x \in [-1, 1[$, on a : $\lim_{n \to +\infty} \int_0^x \frac{t^n}{1-t} dt = 0$.
- c) En déduire que $\forall \, x \in [-1,1[$, la série $\sum_{n\geqslant 1} u_n(x)$ est convergente et donner la valeur de $\sum_{n=1}^{+\infty} u_n(x)$.
- 4.a) Établir la convergence de la série $\sum_{n\geqslant 2}\frac{1}{n^2-1}$ et calculer $\sum_{n=2}^{+\infty}\frac{1}{n^2-1}$.
- b) Montrer que pour tout $x \in [-1, 1[$, la série $\sum_{n \geqslant 2} \frac{x^n}{n^2 1}$ est convergente et calculer sa somme $\sum_{n=2}^{+\infty} \frac{x^n}{n^2 1}$.
- c) L'application f de [-1,1] dans $\mathbb R$ qui à x associe $f(x)=\sum_{n=2}^{+\infty}\frac{x^n}{n^2-1}$ est-elle continue?

Exercice sans préparation S85

On lance une pièce de monnaie équilibrée n fois de suite de manière indépendante et on s'intéresse à l'événement E_n = "au cours des n lancers, deux Pile successifs n'apparaissent pas". On note pour tout $n \in \mathbb{N}^*$, P_n la probabilité de E_n .

Trouver une relation entre P_n , P_{n-1} et P_{n-2} et montrer que $\lim_{n\to+\infty} P_n = 0$.

1. Question de cours : Définition et propriétés d'une fonction convexe sur un intervalle.

Soit f une fonction définie sur \mathbb{R}^+ à valeurs dans \mathbb{R}^+ , dérivable et décroissante. On suppose que les deux intégrales $\int_0^{+\infty} f(t)dt$ et $\int_0^{+\infty} t^2 f(t)dt$ sont convergentes. On veut montrer que pour tout réel $\mu \geqslant 0$, on a :

$$\mu^2 \int_{\mu}^{+\infty} f(t) dt \leqslant \frac{1}{2} \int_{0}^{+\infty} t^2 f(t) dt$$

On note F et G les fonctions définies sur \mathbb{R}^+ par : $F(x) = \int_{-\infty}^{+\infty} f(t)dt$ et $G(x) = F(\sqrt{x})$.

- Montrer que F et G sont décroissantes et convexes sur R⁺.
- 3. En majorant $u^2G(u^2)$ pour tout $u \ge 0$, montrer que $\lim_{x \to +\infty} xG(x) = 0$.
- 4.a) Établir pour tout réel $X \ge 0$, la relation : $\int_0^X G(x)dx = XG(X) + \int_0^{\sqrt{X}} t^2 f(t)dt.$
- b) En déduire la convergence de l'intégrale $\int_0^{+\infty} G(x)dx$ et l'égalité : $\int_0^{+\infty} G(x)dx = \int_0^{+\infty} t^2 f(t)dt$.
- 5.a) Soit OAB un triangle rectangle en O et M un point de son hypothénuse AB. On note P et Q les projections orthogonales de M sur OA et OB respectivement.

Montrer que l'aire du rectangle OPMQ est toujours inférieure ou égale à la moitié de l'aire du triangle OAB.

b) À partir de considérations géométriques sur la courbe représentative de la fonction convexe G, démontrer l'inégalité annoncée en préambule.

Exercice sans préparation S88

- 1. Soit Y une variable aléatoire discrète définie sur un espace probabilisé (Ω, \mathcal{A}, P) qui prend les valeurs 0, 1 et 2 avec les probabilités p_0, p_1 et p_2 respectivement. On suppose que E(Y) = 1 et $E(Y^2) = 5/3$. Calculer p_0, p_1 et p_2 .
- 2. Soit x_0, x_1, \ldots, x_n , (n+1) réels distincts et soit φ l'application de $\mathbb{R}_n[X]$ dans \mathbb{R}^{n+1} qui, à tout polynôme Q de $\mathbb{R}_n[X]$, associe le (n+1)-uplet $(Q(x_0), Q(x_1), \ldots, Q(x_n))$.
- a) Montrer que φ est une application linéaire bijective.
- b) Déterminer la matrice Φ de φ dans les bases canoniques respectives de $\mathbb{R}_n[X]$ et \mathbb{R}^{n+1} .
- 3. Soit X une variable aléatoire discrète qui prend les valeurs x₀, x₁,..., x_n.
 On suppose que E(X), E(X²),..., E(Xⁿ) sont connus. Peut-on déterminer la loi de X?