Chapitre 5

Exemples de questions courtes

QUESTION SANS PRÉPARATION 1

Soit $(X_k)_{k\geqslant 1}$ une suite de variables aléatoires indépendantes suivant toutes la loi $\mathcal{N}(0,1)$. On pose, pour tout entier naturel n non nul :

$$Y_n = \frac{1}{n} \sum_{k=1}^n \sqrt{k} X_k$$

Montrer que la suite $(Y_n)_{n\geqslant 1}$ converge en loi vers une variable aléatoire à densité dont on précisera une densité.

QUESTION SANS PRÉPARATION 2

Soit (σ_n) une suite de réels strictement positifs.

On considère une suite (X_n) de variables aléatoires telles que, pour tout entier naturel n, X_n suit la loi normale $\mathcal{N}(0, \sigma_n^2)$ et X une variable aléatoire suivant la loi $\mathcal{N}(0, \sigma^2)$, $(\sigma > 0)$. Montrer que :

$$X_n \xrightarrow{L} \mathcal{N}(0, \sigma^2) \Longleftrightarrow \lim_{n \to +\infty} \sigma_n = \sigma$$

QUESTION SANS PRÉPARATION 3

Déterminer
$$\lim_{n\to+\infty} \frac{1}{(n-1)!} \int_{n+\sqrt{n}}^{+\infty} x^{n-1} e^{-x} dx$$
.

QUESTION SANS PRÉPARATION 4

Soit X une variable aléatoire réelle définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ et suivant la loi exponentielle de paramètre $\lambda > 0$.

Reconnaître la loi de Y = |X| + 1. En déduire $\mathbb{E}(|X|)$ et V(|X|).

QUESTION SANS PRÉPARATION 5

Soit E l'espace vectoriel des fonctions continues de \mathbb{R} dans \mathbb{R} . Pour tout $f \in E$, on pose :

$$T(f)(x) = \frac{1}{2} \int_{x-1}^{x+1} f(t)dt$$

- 1. Montrer que T est un endomorphisme de E.
- 2. Déterminer $\operatorname{Ker} T$.

146 ESCP 2021 — Oral

QUESTION SANS PRÉPARATION 6

Soit $\in \mathbb{N}^*$. Soit l'ensemble $\mathcal{N} = \{ M \in \mathcal{M}_n(\mathbb{R}), M^n = 0 \}$. Soit F un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ inclus dans \mathcal{N} .

- 1. Quelles sont les matrices symétriques qui appartiennent à \mathcal{N} ?
- 2. En déduire que $\dim(F) \leqslant \frac{n(n-1)}{2}$.

QUESTION SANS PRÉPARATION 7

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $\operatorname{tr}(A) \neq 0$ et soit $f : M \in \mathcal{M}_n(\mathbb{R}) \mapsto M - \operatorname{tr}(M)A$. À quelles conditions sur A l'application f est-elle bijective?

QUESTION SANS PRÉPARATION 8

Soit A une matrice de $\mathcal{M}_2(\mathbb{R})$. On pose $C(A) = \{M \in \mathcal{M}_2(\mathbb{R}) / AM = MA\}$.

- 1. Vérifier rapidement que C(A) est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.
- 2. Déterminer

$$\max_{A\in\mathcal{M}_2(\mathbb{R})}\dim C(A)\ \mathrm{et}\ \min_{A\in\mathcal{M}_2(\mathbb{R})}\dim C(A)$$

QUESTION SANS PRÉPARATION 9

Soit X une variable aléatoire suivant la loi normale $\mathcal{N}(0,1)$. On note Φ sa fonction de répartition.

Existence et calcul de
$$\int_{0}^{+\infty} (1 - \Phi(t)) dt$$
.

QUESTION SANS PRÉPARATION 10

Soit E l'espace vectoriel des fonctions continues sur $\mathbb R$ à valeurs réelles. Soit U l'application définie sur E par :

$$\forall f \in E, \ \forall x \in \mathbb{R}, \ U(f)(x) = \int_0^x \cos(t) f(x-t) dt$$

- 1. Montrer que U est un endomorphisme de E.
- 2. Montrer que U(f) est dérivable sur \mathbb{R} et calculer sa dérivée.