EXERCICE 1

Calcul approché de ln a pour $a \in [1, 2]$.

La notation $f^{(p)}$ désigne la fonction dérivée d'ordre p de la fonction numérique f.

$$\mathbf{1}^{\circ} a$$
) Soit $u: x \mapsto \frac{1}{1+x}$ et $v: x \mapsto \frac{1}{1-x}$.

Déterminer, pour tout $p \in \mathbb{N}$, les fonctions $u^{(p)}$ et $v^{(p)}$.

b) Soit
$$f: x \mapsto \ln \frac{1-x}{1+x}$$
.

Déterminer l'ensemble de définition D_f de f . Montrer qu'il existe deux réels λ et μ à préciser tels que :

$$\forall x \in D_f \qquad f'(x) = \lambda u(x) + \mu v(x).$$

En déduire $f^{(p)}(x)$ pour $p \in \mathbb{N}^*$ et $x \in D_f$.

c) Pour tout $k \in \mathbb{N}$, calculer $f^{(2k)}(0)$ et $f^{(2k+1)}(0)$.

Montrer que:
$$\forall x \in \left[0, \frac{1}{3}\right] \left[f^{(2n+3)}(x)\right] \leq (2n+2)! \frac{3^{2n+3}}{4^{n+1}}$$
.

d) On pose
$$S_n(x) = \sum_{k=0}^n \frac{x^{2k-1}}{2k+1}$$
.

Montrer, en utilisant l'inégalité de Taylor-Lagrange, que :

$$\forall x \in \left[\ 0 \ , \frac{1}{3} \right] \qquad \left[\ f(x) + 2 \, S_n \left(\, x \, \right) \ \right] \ \leq \ \frac{1}{4^{\, n+1} \left(\, 2 \, n+3 \, \right)} \ .$$

3

 $2^{\circ} a$) Soit a un réel de l'intervalle [1, 2]. On pose $x = \frac{a-1}{a+1}$.

Montrer, en utilisant 1°, que :
$$\left| \ln a - 2 S_n(x) \right| \le \frac{1}{4^{n+1} (2n+3)}$$

b) Déterminer la plus petite valeur de l'entier n pour laquelle

$$\frac{1}{4^{n+1}(2n+3)} < 5 \times 10^{-4}$$

c) On choisit $a = \frac{3}{2}$; calculer x.

Pour $k \in \{0,1,2,3\}$ donner la valeur exacte de $\frac{x^{2k+1}}{2k+1}$.

Calculer $2S_3(x)$ (on écrira, avec toutes ses décimales, la valeur approchée de $2S_3(x)$ affichée par la calculatrice).

Comparer avec $\ln\left(\frac{3}{2}\right)$ (on donnera l'ordre de grandeur de $\ln\left(\frac{3}{2}\right) - 2S_3(x)$).

EXERCICE 2

Démonstration de l'égalité : [1]
$$\int_0^1 x^{-x} dx = \sum_{k=1}^{+\infty} k^{-k}$$
.

- 1° Soit $g:]0,1] \rightarrow \mathbb{R}$ $x \mapsto -x \ln x$ Etablir le tableau de variations de g.
- 2° A l'aide de la formule de Taylor-reste intégral, montrer que :

$$\forall n \in \mathbb{N}$$
, $\forall u \in \mathbb{R}$ $e^{u} = \sum_{k=0}^{n} \frac{u^{k}}{k!} + R_{n}(u)$, où R_{n} est continue et vérifie :

$$\forall u \geq 0 \quad 0 \leq R_n(u) \leq \frac{u^{n+1}}{(n+1)!} e^u.$$

- $\mathbf{3}^{\circ}$ Pour $n \in \mathbb{N}$, on définit $J_n = \int_0^{+\infty} e^{-u} u^n du$.
 - a) Justifier l'existence de J_n .
 - b) Calculer J_0 ; à l'aide d'une intégration par parties, trouver une relation entre J_{k+1} et J_k , pour $k \in \mathbb{N}$; en déduire la valeur de J_n .
 - c) Soit $k \in \mathbb{N}$ et $\epsilon \in [0, 1]$.

Effectuer sur l'intégrale $\int_{\epsilon}^{\tau} x^k (\ln x)^k dx$ le changement de variable $v = -(k+1) \ln x$.

- **d**) En déduire l'existence et la valeur de $I_k = \int_0^1 x^k (\ln x)^k dx$.
- 4° a) Pour tout $n \in \mathbb{N}$, montrer que :

$$\int_0^1 x^{-x} dx = \sum_{k=0}^n \frac{(-1)^k}{k!} I_k + r_n, \text{ avec } 0 \le r_n \le \frac{e^{\frac{1}{k}e}}{(n+1)! e^{n+1}}.$$

5

b) En déduire l'égalité [1].

$$5^{\circ}$$
 Pour $n \in \mathbb{N}$, on pose : $s_n = \sum_{k=0}^{n} \frac{1}{(k+1)^{k+1}}$.

Montrer que s_7 , que l'on calculera avec toutes les décimales fournies par la calculatrice, est une valeur approchée à 10^{-7} près de $\int_0^1 x^{-x} \, \mathrm{d}x$.

PROBLEME

Probabilité de trouver un mot donné dans un texte aléatoire.

Dans tout le problème, p désigne un entier supérieur ou égal à 2 et toutes les suites sont définies pour $n \in \mathbb{N}^*$.

 Dans une grande école de commerce, un étudiant a programmé son (micro-)ordinateur de la façon suivante :

l'ordinateur fait imprimer un nombre, aussi grand que l'on veut, de caractères (des lettres), les uns après les autres, de manière aléatoire ; pour chaque caractère imprimé, la probabilité que ce soit une lettre donnée est constante.

- L'étudiant cherche la probabilité pour qu'un mot précis de p lettres apparaisse au moins une fois dans le "texte" produit par l'ordinateur (on ne tient pas compte des passages à la ligne).
- Soit X_j $(j \in \mathbb{N}^*)$ la variable aléatoire égale au j-ième caractère produit par la machine (voir note en bas de page).
- On note $x_0 x_1 \dots x_{p-1}$ la séquence de lettres qui forme le moi en question.
- Le mot voulu est écrit à partir du *i-ième* caractère si l'événement

$$A_i = (X_i = x_0) \cap (X_{i+1} = x_1) \cap ... \cap (X_{i+p-1} = x_{p-1})$$
 est réalisé.

• Pour $n \in \mathbb{N}^*$, on s'intéresse donc au calcul de $v_n = P\left(\bigcup_{i=1}^n A_i\right)$, qui représente la probabilité

pour que le mot voulu apparaisse au moins une fois dans la suite des n + p - 1 premiers caractères imprimés.

- On fait les deux hypothèses suivantes :
 - 1)Les v.a. X_j suivent toutes la même loi de probabilité.
 - 2)Les v.a. X_i sont mutuellement indépendantes.

Les deux parties du problème sont largement indépendantes : seuls les résultats des questions I° et 8° de la première partie sont utiles pour la deuxième partie.

Note : pour avoir des variables aléatoires à valeurs dans N, il suffirait, par exemple, de remplacer les lettres par leurs rangs dans l'alphabet. Mais ceci n'a pas d'importance pour la suite du problème.

PREMIERE PARTIE : relation de récurrence satisfaite par (v_n) .

- 1° Montrer que la suite (v_n) est croissante.
- 2° Montrer que :

$$\forall i \in \mathbb{N}^* \quad P(A_i) = P(A_I).$$

Dans la suite du problème, on note a cette constante (qu'on suppose non nulle).

3° On dit qu'une séquence de lettres $x_0 x_1 \dots x_{p-1}$ est <u>superposable en partie</u> (en abrégé : s.c.p.) si et seulement si :

$$\exists \ i \in [[1, p-1]] \quad \forall j \in [[1, p-1]] \ (j \ge i \implies x_j = x_{j-i}).$$

Regarder si les séquences suivantes sont s.e.p. (et donner une valeur de i le cas échéant) :

- a) ENTENDENT
- b) ECRICOME
- c) FINI

Dans la suite du problème, on suppose que :

la séquence
$$x_0 x_1 \dots x_{p-1}$$
 n'est pas s.e.p. .

- 4° Soit q et r deux entiers strictement positifs. Montrer que, si $1 \le r \le p-1$, alors A_q et A_{q+r} sont incompatibles.
- 5° Soit $k \ge p$. Montrer que : $v_{k+1} = v_k + a P\left(\left(\bigcup_{i=1}^{k-p+1} A_i\right) \cap A_{k+1}\right)$.
- **6°** Quelles sont les variables X_j qui interviennent dans $\bigcup_{i=1}^{k-p+1} A_i$? Et dans A_{k+1} ? En déduire que : $v_{k+1} = v_k + a - a v_{k-p+1}$.
- 7° Calculer v_k pour $k \in [[1, p]]$.

Pour tout $n \in \mathbb{N}^*$, on pose $u_n = 1 - v_n$

 8° Vérifier que (u_n) est une suite décroissante de réels de [0,1] telle que :

$$\begin{cases} \forall k \in [[1, p]] & u_k = 1 - ka \\ \vdots & \vdots \\ \forall k \geq p & u_{k+1} = u_k - au_{k-p+1} \end{cases}$$

DEUXIEME PARTIE : étude de la suite (u_n) ; exemples.

- 1° Justifier la convergence de la suite (u_n) .

 Quelle est sa limite? En revenant à (v_n) , quelle interprétation peut-on donner de ce résultat?
- 2° Majoration de u_n .

Montrer que: $\forall n \ge p$ $u_n \le (1-a)^{n-p} (1-pa)$.

Retrouver ainsi la limite de (u_n) .

- 3° Etude du cas particulier: p = 2 et $a = \frac{4}{25}$.
 - a) Calculer u_n en fonction de n.
 - b) On suppose que, pour chaque caractère imprimé, la probabilité pour que ce soit la lettre A (respectivement S) est $\frac{40}{75}$ (respectivement $\frac{3}{10}$).

Quelle est la probabilité d'avoir au moins une fois le mot "AS" dans un texte de 51 caractères ? (on écrira toutes les décimales fournies par la calculatrice).

- **4**° On suppose dans cette question que p = 3 et $a < \frac{2^2}{3^3}$.
 - 'a) Pour tout $n \in \mathbb{N}^*$, on pose $U_n = \begin{bmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{bmatrix}$.

Montrer que, pour $k \geq 3$, on peut écrire : $U_{k-1} = A \ U_{k-2}$, avec $A \in \mathcal{M}_3$ (\mathbb{R}). Déterminer l'expression de U_n en fonction de n,A, et U_1 .

b) Montrer que les valeurs propres de la matrice A sont les nombres λ solutions de l'équation :

$$\lambda^3 - \lambda^2 + a = 0$$

c) Etudier les variations sur \mathbb{R} de la fonction $x \mapsto x^3 - x^2 + a$; En déduire que A admet trois valeurs propres réelles λ_1 , λ_2 , λ_3 vérifiant

$$-\,1\,<\,\lambda_1\,<\,0\,<\,\lambda_2\,<\,\frac{2}{3}\,<\,\lambda_3\,<\,1\ .$$

d) Montrer qu'il existe une matrice diagonale $D \in \mathcal{M}_3$ (\mathbb{R}), et une matrice $Q \in GL_3$ (\mathbb{R}), telles que :

$$\forall n \in \mathbb{N}^* \quad A^{n-1} = OD^{n-1}O^{-1}.$$

9

(on ne demande pas d'expliciter Q)

e) En déduire qu'il existe trois réels α , β , γ , qu'on ne demande pas de calculer, tels que :

$$\forall n \in \mathcal{N}^* \qquad u_n \, = \, \alpha \, \lambda_1^{n-1} + \beta \, \lambda_2^{n-1} + \gamma \, \lambda_3^{n-1}$$

- 5° Dans cette dernière question : p = 4.
 - a) On suppose, dans ce a), que, pour chaque caractère, la probabilité du F (resp. du I, du N) est 0.02 (resp. 0.1, 0.05).
 - (i) Ecrire un algorithme qui, pour n donné, calcule u_n et affiche la probabilité d'avoir au moins une fois le mot "FINI" dans un texte de n + 3 caractères.
 - (ii) Donner les valeurs numériques obtenues (arrondies à 10^{-4} près) pour $n \in \{50, 100, 300\}$.
 - b) On cherche, comme au 4° précédent, à établir une expression de u_n en fonction de n. On suppose que : $a < \frac{3^3}{4^4}$.
 - (i) Soit le polynôme $R=X^4-X^3+a$. Montrer que R a deux racines réelles μ_1 et μ_2 . Vérifier qu'elles appartiennent à l'intervalle [0,1[.
 - (ii) Soit δ une racine complexe (non réelle) de R.

Justifier son existence. Montrer que $\overline{\delta}$ est aussi racine de R.

(iii) Comment se factorise alors R dans $\mathbb{C} \mid X \mid$?

En considérant le produit des racines de R, montrer que : $|\delta|^2 = \frac{a}{\mu_1 \mu_2}$.

On démontre alors (et on admettra) que $|\delta| < 1$, et qu'il existe un unique quadruplet $(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \in \mathbb{C}^4$ tel que :

$$\forall n \in \mathbb{N}^* \quad u_n = \alpha_1 \, \mu_1^{n-1} + \alpha_2 \, \mu_2^{n-1} + \alpha_3 \, \delta^{n-1} + \alpha_4 \, \overline{\delta}^{n+1}.$$

Montrer que α_1 et α_2 sont réels, et que $\alpha_4 = \overline{\alpha_3}$.

