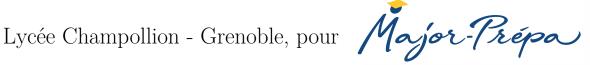
MATHÉMATIQUES - Edhec E 2001

Proposition de corrigé par David Meneu



Exercice 1

E désigne un espace vectoriel réel sur \mathbb{R} , rapporté à sa base $\mathcal{B} = (e_1, e_2, e_3)$. On désigne par a un réel non nul et on considère l'endomorphisme f_a de E, défini par :

$$f_a(e_2) = 0$$
, $f_a(e_1) = f_a(e_3) = ae_1 + e_2 - ae_3$

1. a) La définition des trois images par f des vecteurs de la base (e_1, e_2, e_3) permet d'en déduire la matrice de l'endomorphisme dans cette base :

$$A_a = \begin{pmatrix} f_a(e_1) & f_a(e_2) & f_a(e_3) \\ a & 0 & a \\ 1 & 0 & 1 \\ -a & 0 & -a \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix}$$

Le calcul matriciel donne : $A_a^2 = 0_3$, matrice nulle d'ordre 3.

b) La question précédente montre que $P(X)=X^2$ est un polynôme annulateur de A_a . On sait alors que les valeurs propres possibles de A_a sont les racines de P, ce qui réduit les candidates à 0. Et 0 est bien valeur propre de A_a car cette matrice n'est pas inversible, vu qu'elle possède une colonne nulle.

On en conclut que 0 est bien la seule valeur propre de A_a .

- c) Comme on l'a déjà dit, A_a n'est pas inversible. Mais A_a n'est pas la matrice nulle, donc $Ker(A_a)$ n'est pas l'ensemble E tout entier, c'est-à-dire que le sous-espace propre associé à la seule valeur propre de A_a n'est pas de dimension 3, celle de E. Par conséquent, A_a n'est pas diagonalisable.
- 2. On pose $u_1 = a.e_1 + e_2 a.e_3$.
 - a) La famille $\mathcal{B}' = (u_1, e_2, e_3)$ est consituée de 3 vecteurs dans un espace E de dimension 3 : il suffit donc de montrer que c'est une famille libre pour que ce soit une base de E.

On pose donc une combinaison linéaire nulle de ces trois vecteurs :

$$\lambda_1.u_1 + \lambda_2.e_2 + \lambda_3.e_3 = 0_E \iff a.\lambda_1.e_1 + (\lambda_1 + \lambda_2).e_2 + (\lambda_3 - a.\lambda_1).e_3 = 0_E$$

On s'est donc ramené à une combinaison linéaire nulle de la base \mathcal{B} , la liberté de \mathcal{B} implique donc:

$$\begin{cases} a.\lambda_1 &= 0\\ \lambda_1 + \lambda_2 &= 0\\ \lambda_1 - a.\lambda_3 &= 0 \end{cases} \iff \begin{cases} \lambda_1 &= 0 \text{ (car } a \neq 0)\\ \lambda_2 &= -\lambda_1 = 0\\ \lambda_3 &= \lambda_1/a = 0 \end{cases}$$

On a bien montré que : $\lambda_1.u_1 + \lambda_2.e_2 + \lambda_3.e_3 = 0_E \Longrightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0$, la famille \mathcal{B}' est bien libre, et c'est une base de E.

b) Les trois images suivantes permettent de déduire la matrice de f dans cette nouvelle base :

$$\begin{cases} f_a(u_1) &= a.f_a(e_1) + f_a(e_2) - a.f_a(e_3) = 0 & \text{car } f_a(e_1) = f_a(e_3) \text{ et } f_a(e_2) = 0 \\ f_a(e_2) &= 0 \\ f_a(e_3) &= a.e_1 + e_2 - a.e_3 = u_1 \end{cases}$$

Donc:

$$\operatorname{Mat}_{\mathcal{B}'}(f) = K = \begin{pmatrix} f_a(u_1) & f_a(e_2) & f_a(e_3) \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} u_1 \\ e_2 \\ e_3 \end{pmatrix}$$

Dans la suite, on cherche à caractériser les endomorphismes g tels que $g \circ g = f_a$.

- 3. On suppose qu'un tel endomorphisme g existe et on note M sa matrice dans la base \mathcal{B}' .
 - a) L'égalité d'endomorphismes est équivalente à l'égalité de leurs matrices dans une même base donnée, ici en se plaçant dans la base \mathcal{B}' :

$$g \circ g = f_a \iff \operatorname{Mat}_{\mathcal{B}'}(g \circ g) = \operatorname{Mat}_{\mathcal{B}'}(f_a) \iff M^2 = K$$

On a alors:

$$MK = MM^2 = M^3 = M^2M = KM$$

Une matrice commute toujours avec toutes ses puissances!

b) La question précédente montre que M doit commuter avec K (condition nécessaire). On cherche donc de façon générale, toutes les matrices $M = \begin{pmatrix} a & b & c \\ d & e & f \\ q & h & i \end{pmatrix}$ telles que :

$$MK = KM \iff \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

$$\iff \begin{pmatrix} 0 & 0 & a \\ 0 & 0 & d \\ 0 & 0 & g \end{pmatrix} = \begin{pmatrix} g & h & i \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \iff \begin{cases} a & = i \\ d & = 0 = g = h \end{cases} \text{ par identification des coefficients}$$

On se restreint donc déjà aux matrices de la forme $M = \begin{pmatrix} a & b & c \\ 0 & e & f \\ 0 & 0 & a \end{pmatrix}$, où a, b, c, e, f sont des réels

<mark>ch</mark>oisis a priori de façon indépendante.

Il reste alors à exprimer la condition : $M^2 = K$, qui n'est pas équivalente à MK = KM! Toujours par identification des coefficients, en repartant de la dernière forme obtenue de M:

$$M^{2} = K \iff \begin{pmatrix} a^{2} & (a+e)b & 2ac+bf \\ 0 & e^{2} & (a+e)f \\ 0 & 0 & a^{2} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \iff \begin{cases} a^{2} & = 0 \\ e^{2} & = 0 \\ (a+e)b & = 0 \\ (a+e)f & = 0 \\ 2ac+bf & = 1 \end{cases}$$

En renommant respectivement x, y, z les coefficients b, c, f, on obtient bien que $M^2 = K$ si et seulement si $M = \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix}$ où x, y, z sont trois réels tels que xz = 1.

[©] Major-Prépa

4. On a précédemment raisonné par condition *nécessaire*, c'est-à-dire que les différentes étapes nous ont conduites à écrire l'*implication* :

$$g \circ g = f_a \Longrightarrow \exists (x, y, z) \in \mathbb{R}^3; \ xz = 1 \text{ et } \operatorname{Mat}_{\mathcal{B}'}(g) = M = \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix}$$

Vérifions maintenant la réciproque : soient donc x, y, z trois réels tels que xz = 1 et g l'endomorphisme

de E tel que $M = \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix}$ soit la matrice de g dans la base \mathcal{B}' . On a alors :

$$M^{2} = \begin{pmatrix} 0 & 0 & xz \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = K \quad \text{vu que} \quad xz = 1$$

L'égalité des matrices représentatives dans une même base donne bien l'égalité d'endomorphismes :

$$g \circ g = f_a$$

Exercice 2

On désigne par n un entier naturel supérieur ou égal à 2.

On considère une épreuve aléatoire pouvant aboutir à 3 résultats différents R_1 , R_2 et R_3 de probabilités respectives P_1 , P_2 et P_3 . On a donc $P_1+P_2+P_3=1$ et on admet que, pour tout i de $\{1,2,3\}$, $0 < P_i < 1$. On effectue n épreuves indépendantes du type de celle décrite ci-dessus.

Pour tout i de $\{1, 2, 3\}$, on note X_i la variable aléatoire qui vaut 1 si le résultat numéro i n'est pas obtenu à l'issue de ces n épreuves et qui vaut 0 sinon.

On désigne par X la variable aléatoire égale au nombre de résultats qui n'ont pas été obtenus à l'issue des n épreuves.

- 1. a) Par définition : chaque variable aléatoire X_i contribue d'une unité $(X_i = 1)$ au décompte du nombre d'événements R_i qui ne sont pas sortis au bout de n épreuves, si c'est le cas, et n'en a aucune $(X_i = 0)$ sinon. C'est bien en faisant la somme $X = X_1 + X_2 + X_3$ qu'on obtient le nombre total d'événements R_i qui ne sont toujours pas obtenus au bout de n épreuves.
 - b) Soit $i \in \{1, 2, 3\}$: l'événement $[X_i = 1]$ est réalisé si et seulement si l'événement R_i n'est toujours pas réalisé après n épreuves indépendantes.

Par conséquent : $P(X_i = 1) = (1 - P_i)^n$ et $P(X_i = 0) = 1 - P(X_i = 1) = 1 - (1 - P_i)^n$ sont les deux probabilités de la loi de X_i .

c) La linéarité de l'espérance donne tout simplement :

$$E(X) = E(X_1) + E(X_2) + E(X_3) = (1 - P_1)^n + (1 - P_2)^n + (1 - P_3)^n$$

puisque X_i , en tant que variable de Bernoulli, a pour espérance : $E(X_i) = P(X_i = 1)$.

La suite de cet exercice consiste à rechercher les valeurs des réels P_i en lesquelles E(X) admet un minimum local. Pour ce faire, on note f la fonction définie sur l'ouvert $]0,1[\times]0,1[$ de \mathbb{R}^2 par :

$$f(x,y) = (1-x)^n + (1-y)^n + (x+y)^n.$$

2. a) On pose $P_1 = x$ et $P_2 = y$: alors puisque $P_1 + P_2 + P_3 = 1$, on a $1 - P_3 = x + y$, et en effet :

$$E(X) = (1-x)^n + (1-y)^n + (x+y)^n = f(x,y)$$

[©] Major-Prépa

- b) La fonction f est de classe C^2 sur $]0,1[\times]0,1[$ puisque c'est une fonction polynômiale en les deux variables x et y.
- 1. a) Calcul des dérivées partielles d'ordre 1 : pour tout couple (x, y) de $]0, 1[\times]0, 1[$,

$$\partial_1(f)(x,y) = -n(1-x)^{n-1} + n(x+y)^{n-1}$$
 et $\partial_2(f)(x,y) = -n(1-y)^{n-1} + n(x+y)^{n-1}$

b) Les points critiques de f sont les solutions sur $]0,1[\times]0,1[$ du système :

$$\begin{cases} \partial_1(f)(x,y) &= 0 \\ \partial_2(f)(x,y) &= 0 \end{cases} \iff \begin{cases} -n(1-x)^{n-1} + n(x+y)^{n-1} = 0 \\ -n(1-y)^{n-1} + n(x+y)^{n-1} = 0 \end{cases} \iff \begin{cases} (1-x)^{n-1} = (x+y)^{n-1} \\ (1-y)^{n-1} = (x+y)^{n-1} \end{cases}$$

Or ici, x et y sont éléments de]0,1[, donc 1-x, 1-y et x+y sont strictement positifs : comme la fonction puissance $t\mapsto t^{n-1}$ est strictement croissante sur \mathbb{R}_+ , le système est par conséquent équivalent à :

$$\begin{cases} 1 - x = x + y \\ 1 - y = x + y \end{cases} \iff \begin{cases} y = 1 - 2x \\ 1 - 1 + 2x = x + 1 - 2x \end{cases} \iff \begin{cases} y = 1 - 2x = 1/3 \\ 3x = 1 \iff x = 1/3 \end{cases}$$

La fonction f admet bien un unique point critique, à savoir $(\frac{1}{3}, \frac{1}{3})$.

2. a) La fonction f étant de classe C^1 sur $]0,1[\times]0,1[$, son unique point critique est aussi le seul point de ce domaine ouvert où elle peut admettre un extrémum local.

Pour le vérifier, f étant de classe C^2 sur $]0,1[\times]0,1[$, on y calcule ses dérivées partielles d'ordre 2; pour tout couple (x,y) de $]0,1[\times]0,1[$:

$$\partial_{1,1}^2(f)(x,y) = (n-1)n(1-x)^{n-2} + (n-1)n(x+y)^{n-2}$$

$$\partial_{2,2}^2(f)(x,y) = (n-1)n(1-y)^{n-2} + (n-1)n(x+y)^{n-2}$$

$$\partial_{1,2}^2(f)(x,y) = (n-1)n(x+y)^{n-2} = \partial_{2,1}^2(f)(x,y) \qquad \text{d'après le théorème de Schwarz}$$

On obtient ainsi, la matrice hessienne de f au point $(\frac{1}{3}, \frac{1}{3})$:

$$H = \begin{pmatrix} \partial_{1,1}^2(f)\left(\frac{1}{3}, \frac{1}{3}\right) & \partial_{1,2}^2(f)\left(\frac{1}{3}, \frac{1}{3}\right) \\ \partial_{2,1}^2(f)\left(\frac{1}{3}, \frac{1}{3}\right) & \partial_{2,2}^2(f)\left(\frac{1}{3}, \frac{1}{3}\right) \end{pmatrix} = \begin{pmatrix} 2(n-1)n\left(\frac{2}{3}\right)^{n-2} & (n-1)n\left(\frac{2}{3}\right)^{n-2} \\ (n-1)n\left(\frac{2}{3}\right)^{n-2} & 2(n-1)n\left(\frac{2}{3}\right)^{n-2} \end{pmatrix}$$

Notons ici : $A = (n-1)n(\frac{2}{3})^{n-2}$, les valeurs propres de $H = \begin{pmatrix} 2A & A \\ A & 2A \end{pmatrix}$ sont les réels λ tels que :

$$H - \lambda I_2$$
 est non-inversible $\iff \det \begin{pmatrix} 2A - \lambda & A \\ A & 2A - \lambda \end{pmatrix} = 0$

$$\iff (2A - \lambda)^2 - A^2 = 0 \iff (2A - \lambda - A)(2A - \lambda + A) = 0$$

$$\iff (A - \lambda)(3A - \lambda) = 0$$

Les valeurs propres de H sont sont A et 3A. Or, puisque $n\geqslant 2$ d'après l'énoncé,

 $A = (n-1)n(\frac{2}{3})^{n-2}$ est strictement positif, donc les deux valeurs propres de H sont strictement positives :

on en déduit qu'au point $(\frac{1}{3}, \frac{1}{3})$, la fonction f admet un extrémum local, et que c'est un minimul local.

b) Lorsque
$$x = P_1 = \frac{1}{3}$$
 et $y = P_2 = \frac{1}{3}$, alors $P_3 = 1 - P_1 - P_2 = \frac{1}{3}$ aussi, et dans ce cas :

$$E(X) = 3 \times \left(1 - \frac{1}{3}\right)^n = \frac{2^n}{3^{n-1}}$$

Exercice 3

Soit f la fonction définie par : $\begin{cases} f(x) = 0 & \text{si } x < 0 \\ f(x) = xe^{-\frac{x^2}{2}} & \text{si } x \geqslant 0 \end{cases}$

1. La fonction f est continue et positive sur $]-\infty,0[$ comme fonction constante nulle, elle est positive sur $[0,+\infty[$ comme produit de deux fonctions positives $(x\geqslant 0$ et $e^{-x^2/2}>0)$, et continue sur $]0,+\infty[$ comme composée et produit de fonctions continues sur cet intervalle.

La fonction f est donc positive sur \mathbb{R} , continue sur \mathbb{R} sauf peut-être en 0 (il n'est pas difficile de vérifier qu'elle l'est).

De plus, pour tout réel A > 0:

$$\int_0^A x \cdot e^{-x^2/2} dx = \left[e^{-x^2/2} \right]_0^A = 1 - e^{-A^2/2} \xrightarrow[A \to +\infty]{} 1$$

donc :
$$\int_0^{+\infty} f(x) dx = 1 \text{ et } \int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^0 f(x) dx + \int_0^{+\infty} f(x) dx = 0 + 1 = 1,$$
donc f est bien une densité de probabilité.

La durée de vie d'un certain composant électronique est une variable aléatoire X dont une densité est f.

- 2. a) La fonction de répartition F de X est définie par : $\forall x \in \mathbb{R}, \ F(x) = \int_{-\infty}^{x} f(t) dt$; deux cas évidents sont à distinguer :
 - Si x < 0: $\int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{x} 0 dt = 0$
 - Si $x \ge 0$: $F(x) = \int_{-\infty}^{0} f(t) dt + \int_{0}^{x} f(t) dt = 1 e^{-x^{2}/2}$.
 - b) Il est évident que μ ne peut être négatif vu que F est nulle sur $]-\infty,0[$, on cherche donc μ positif tel que :

$$P(X \leqslant \mu) = F(\mu) = \frac{1}{2} \iff 1 - e^{-\mu^2/2} = \frac{1}{2} \iff e^{-\mu^2/2} = \frac{1}{2} \iff -\mu^2/2 = -\ln(2) \iff \mu = \sqrt{2\ln(2)}$$

3. On appelle mode de la variable aléatoire X, tout réel x en lequel f atteint son maximum. La fonction f est nulle sur $]-\infty,0]$, donc ne peut pas atteindre un maximum sur cet intervalle. Sur $]0,+\infty[$, la fonction f est dérivable et :

$$\forall x > 0, \quad f'(x) = 1.e^{-x^2/2} + x.(-x).e^{-x^2/2} = (1 - x^2).e^{-x^2/2}$$

Comme pour $x>0: 1-x^2>0 \iff x^2<1 \iff x<1$, la fonction f est strictement croissante sur]0,1], puis strictement décroissante sur $[1,+\infty[$, donc admet un unique maximum sur \mathbb{R} en $M_0=1$, le mode de X.

5

4. a) La variable aléatoire X admet une espérance si et seulement si l'intégrale $\int_{-\infty}^{+\infty} x.f(x)dx$ est absolument convergente.

Comme la fonction $x \mapsto x.f(x)$ est nulle (car f l'est) sur $]-\infty,0[$ et positive sur $[0,+\infty[$, cela revient à étudier la convergence simple de $\int_{0}^{+\infty} x.f(x)dx = \int_{0}^{+\infty} x^{2}.e^{-x^{2}/2}dx$.

Or on sait, d'après le cours sur la loi normale, que : si $Y \hookrightarrow \mathcal{N}(0,1)$, alors Y admet une espérance et une variance, valant E(Y) = 0 et V(Y) = 1, qui est aussi égale à $E(Y^2)$ d'après la formule de Koenig-Huygens $V(Y) = E(Y^2) - E(Y)^2$.

Cela signifie que l'intégrale : $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x^2 \cdot e^{-x^2/2} dx$ est convergente et vaut 1, d'après le théorème de transfert.

La fonction $x\mapsto x^2.e^{-x^2/2}$ étant paire, on peut donc écrire :

$$\int_0^{+\infty} x^2 \cdot e^{-x^2/2} dx = \frac{1}{2} \int_{-\infty}^{+\infty} x^2 \cdot e^{-x^2/2} dx = \frac{\sqrt{2\pi}}{2}$$

On a bien démontré ainsi que X admet une espérance, valant $E(X) = \frac{\sqrt{2\pi}}{2}$

b) La variable aléatoire X admet une variance si et seulement si elle admet un moment d'ordre 2, donc si l'intégrale $\int_{-\infty}^{+\infty} x^2 \cdot f(x) dx$ est absolument convergente, d'après le théorème de transfert. Comme la fonction $x \mapsto x^2 \cdot f(x)$ est nulle sur $]-\infty,0[$ et positive sur $[0,+\infty[$, cela revient à prouver la convergence simple de $\int_0^{+\infty} x^2 \cdot f(x) dx = \int_0^{+\infty} x^3 \cdot e^{-x^2/2} dx$.

Soit A un réel strictement positif, dans l'intégrale $\int_0^A x^3 \cdot e^{-x^2/2} dx$, on pose :

$$u(x) = x^2 \longrightarrow u'(x) = 2x$$

$$v'(x) = x \cdot e^{-x^2/2} \longrightarrow v(x) = -e^{-x^2/2}$$

Les fonctions u et v sont de classe C^1 sur $[0, +\infty[$, donc par intégration par parties :

$$\forall A > 0, \quad \int_0^A x^3 \cdot e^{-x^2/2} dx = \left[-x^2 \cdot e^{-x^2/2} \right]_0^A + 2 \int_0^A x \cdot e^{-x^2/2} dx = -A^2 \cdot e^{-A^2/2} + 2 \cdot \left(1 - e^{-A^2/2} \right) dx$$

Par croissances comparées : $\lim_{A \to +\infty} -A^2 \cdot e^{-A^2/2} = 0 = \lim_{A \to +\infty} e^{-A^2/2}$,

donc l'intégrale $\int_0^{+\infty} x^3 e^{-x^2/2} dx$ converge et vaut 2.

On en déduit que X admet un moment d'ordre 2 qui vaut $E(X^2)=2$, et donc une variance qui vaut, d'après la formule de Koenig-Huygens :

$$V(X) = E(X^2) - E(X)^2 = 2 - \frac{2\pi}{4} = 2 - \frac{\pi}{2}$$

6

PROBLÈME

Partie 1

On définit la suite réelle $(v_n)_{n\in\mathbb{N}^*}$ par : $\forall n\in\mathbb{N}^*,\ v_n=\sum_{k=1}^n\frac{1}{k}$.

1. La fonction inverse étant strictement décroissante sur $]0, +\infty[$, on peut écrire :

$$\forall k \in \mathbb{N}^*, \ \forall t \in [k, k+1], \quad \frac{1}{k+1} \leqslant \frac{1}{t}$$

La fonction inverse étant également continue sur $]0, +\infty[$, donc sur [k, k+1] pour tout entier naturel k non nul, la croissance de l'intégrale (k < k+1) donne :

$$\forall k \in \mathbb{N}^*, \quad \int_k^{k+1} \frac{1}{k+1} \mathrm{d}t \leqslant \int_k^{k+1} \frac{1}{t} \mathrm{d}t \iff \forall k \in \mathbb{N}^*, \quad \frac{1}{k+1} \cdot (k+1-k) = \frac{1}{k+1} \leqslant \int_k^{k+1} \frac{\mathrm{d}t}{t} \mathrm{d}t$$

2. Soit $n \in \mathbb{N}^*$ (et même : $n \ge 2$) ; le passage à la somme dans cette inégalité lorsque k varie de 1 à n-1 donne :

$$\sum_{k=1}^{n-1} \frac{1}{k+1} \leqslant \sum_{k=1}^{n-1} \int_{k}^{k+1} \frac{\mathrm{d}t}{t} \iff \sum_{j=2}^{n} \frac{1}{j} \leqslant \int_{1}^{n} \frac{\mathrm{d}t}{t}$$

Par le changement d'indice j = k + 1 dans la somme de gauche, et d'après la relation de Chasles dans le membre de droite. L'inégalité se réécrit encore :

$$\sum_{k=1}^{n} \frac{1}{k} - 1 \leqslant \left[\ln(t)\right]_{1}^{n} \iff v_{n} - 1 \leqslant \ln(n) \iff v_{n} \leqslant \ln(n) + 1$$

Inégalité valable pour tout entier $n \ge 2$, et dont on vérifie facilement qu'elle est aussi vraie pour n = 1 (cas d'égalité).

Partie 2

1. a) On souhaite ici démontrer que la suite (u_n) est bien définie par : $u_0 = 1$ et la relation de récurrence

$$\forall n \in \mathbb{N}, \ u_{n+1} = u_n + \frac{1}{u_n}$$

Soit donc $\mathcal{P}(n)$: " u_n existe et $u_n > 0$ ".

I. $\mathcal{P}(0)$ est évidemment vraie.

H. Supposons que pour un certain $n \in \mathbb{N}$, u_n existe et $u_n > 0$:

dans ce cas, $\frac{1}{u_n}$ existe et est strictement positif : $u_{n+1} = u_n + \frac{1}{u_n}$ est donc bien défini et strictement positif (somme de deux réels strictement positifs) : ainsi $\mathcal{P}(n+1)$ est vraie si $\mathcal{P}(n)$ est vraie.

C. La propriété est initialisée à n=0, et elle est héréditaire : d'après le théorème de récurrence, la propriété est donc vraie pour tout $n \in \mathbb{N}$. La suite dans son ensemble est donc parfaitement définie, et à termes tous strictement positifs.

b) Pour tout entier $n \in \mathbb{N}$: $u_{n+1} - u_n = \frac{1}{u_n} > 0$ d'après ce que l'on vient de voir. La suite $(u_n)_{n \in \mathbb{N}}$ est donc croissante. 2. a) Soit $k \in \mathbb{N}$ quelconque :

$$u_{k+1}^2 - u_k^2 = \left(u_k + \frac{1}{u_k}\right)^2 - u_k^2 = u_k^2 + 2 + \frac{1}{u_k^2} - u_k^2 = 2 + \frac{1}{u_k^2}.$$

b) Soit maintenant n un entier naturel non nul, par sommation de la relation précédente pour k variant de 0 à n-1, on obtient :

$$\forall n \in \mathbb{N}^*, \quad \sum_{k=0}^{n-1} (u_{k+1}^2 - u_k^2) = \sum_{k=0}^{n-1} (2 + \frac{1}{u_k^2})$$

soit:

$$\forall n \in \mathbb{N}^*, \quad u_n^2 - u_0^2 = 2n + \sum_{k=0}^{n-1} \frac{1}{u_k^2}$$

ce qui donne bien la relation demandée par l'énoncé, puisque $u_0 = 1$.

c) Pour tout $n \in \mathbb{N}^*$: $\sum_{k=0}^{n-1} \frac{1}{u_k^2} \ge 0$, ce qui donne bien : $\forall n \in \mathbb{N}^*, \ u_n^2 \ge 2n+1$, ou encore (puisque : $\forall n \in \mathbb{N}, \ u_n > 0$) :

$$\forall n \in \mathbb{N}^*, \quad u_n \geqslant \sqrt{2n+1}$$

par stricte croissance de la fonction racine carrée sur \mathbb{R}_+ .

Comme $\lim_{n\to\infty} \sqrt{2n+1} = +\infty$, on conclut grâce au théorème de comparaison des limites que :

$$\lim_{n \to +\infty} u_n = +\infty.$$

3. a) Le résultat précédent dit que : $\forall k \in \mathbb{N}^*, \ u_k^2 \geqslant 2k+1 > 0$, donc par inverse :

$$\forall k \in \mathbb{N}^*, \quad \frac{1}{u_k^2} \leqslant \frac{1}{2k+1} < \frac{1}{2k}$$

Par sommation pour k variant de 1 à n-1, on obtient l'inégalité :

$$\forall n \in \mathbb{N}^*, \quad \sum_{k=1}^{n-1} \frac{1}{u_k^2} \leqslant \sum_{k=1}^{n-1} \frac{1}{2k}$$

Pour faire apparaître u_n^2 dans le membre de gauche de l'inégalité, il faut ajouter aux deux membres : $2n+1+\frac{1}{u_0^2}=2n+2$, ce qui donne, étant donné que $\sum_{k=1}^{n-1}\frac{1}{2k}=\frac{1}{2}\sum_{k=1}^{n-1}\frac{1}{k}=\frac{1}{2}v_{n-1}$:

$$\forall n \in \mathbb{N}^*, \quad u_n^2 \leqslant 2n + 2 + \frac{1}{2}.v_{n-1}$$

ce qui est bien la relation demandée par l'énoncé.

b) Comme, d'après la question 2. de la partie 1. : pour tout entier $n \ge 2$, $v_{n-1} \le \ln(n-1) + 1$, on a :

$$2n + 2 + \frac{1}{2}v_{n-1} \le 2n + 2 + \frac{1}{2}(\ln(n-1) + 1) = 2n + \frac{5}{2} + \frac{1}{2}\ln(n-1)$$

ce qui, compte tenu de la relation de la question précédente, donne bien :

$$\forall n \ge 2, \quad u_n^2 \le 2n + \frac{5}{2} + \frac{1}{2}\ln(n-1).$$

c) Les questions 2.c) et 3.b) de cette partie permettent ainsi d'écrire l'encadrement suivant, vrai pour tout entier $n \ge 2$:

$$2n+1 \leqslant u_n^2 \leqslant 2n + \frac{5}{2} + \frac{1}{2}\ln(n-1)$$

D'où (division membre à membre par 2n > 0):

$$\frac{2n+1}{2n} = 1 + \frac{1}{2n} \leqslant \frac{u_n^2}{2n} \leqslant 1 + \frac{5}{4n} + \frac{\ln(n-1)}{4n}.$$

Or : $\lim_{n \to +\infty} 1 + \frac{1}{2n} = 1$, et puisque : $\forall n \ge 2$, $0 \le \frac{\ln(n-1)}{n} \le \frac{\ln(n)}{n}$ (par croissance de la fonction $\ln \operatorname{sur} \mathbb{R}_+^*$) avec $\lim_{n \to +\infty} \frac{\ln(n)}{n} = 0$ (croissances comparées), on en déduit (par le théorème d'encadrement): $\lim_{n \to +\infty} \frac{\ln(n-1)}{n} = 0.$ Ainsi, $\lim_{n \to +\infty} 1 + \frac{5}{4n} + \frac{\ln(n-1)}{4n} = 1 + 0 + 0 = 1.$

Ainsi,
$$\lim_{n \to +\infty} 1 + \frac{5}{4n} + \frac{\ln(n-1)}{4n} = 1 + 0 + 0 = 1$$

Le théorème d'encadrement permet ainsi de conclure que la suite $\left(\frac{u_n^2}{2n}\right)$ est convergente, et que $\lim_{n \to +\infty} \frac{u_n^2}{2n} = 1.$

Comme la fonction $x \mapsto \sqrt{x}$ est continue en 1, on en déduit : $\lim_{n \to +\infty} \sqrt{\frac{u_n^2}{2n}} = \sqrt{1}$, soit $(\sqrt{u_n^2} = |u_n| = u_n \text{ car } u_n > 0): \lim_{n \to +\infty} \frac{u_n}{\sqrt{2n}} = 1$, ce qui exprime que u_n est équivalent à $\sqrt{2n}$:

$$u_n \quad \underset{n \to +\infty}{\sim} \quad \sqrt{2n}$$

Partie 3

```
1. function y=suite(n)
       u=1
       for i=1:n
           u = u + 1/u
       end
  y=u
  endfunction
2_1 a) u=1; n=0;
```

À l'exécution, le programme renvoie la valeur n=4998, ce qu'on ne pouvait pas vérifier sans la machine, et justifie donc l'étude ci-dessous!

b) On donne ln(2) < 0.70 et ln(5) < 1.61. D'après les propriétés du logarithme népérien, et puisque $5000 = 5 \times (10)^3 = 5^4 \times 2^3$:

$$\ln(5000) = \ln(5^4) + \ln(2^3) = 4\ln(5) + 3\ln(2) < 4 \times 1,61 + 3 \times 0,70 = 8,54$$

c) si $n \leq 4995$: d'après la question 3.b) de la Partie 2., on a alors : $u_n^2 \leq u_{4995}^2$ (car la suite (u_n) est croissante et positive), et

$$u_{4995} \le 2 \times 4995 + 2, 5 + 0, 5. \ln(4994) \le 9992, 5 + 0, 5. \ln(5000)$$

car la fonction l
n est strictement croissante sur]0, + ∞ [, ce qui donne :

si
$$n \leqslant 4995$$
, alors $u_n^2 \leqslant 9992, 5+4, 27=9996, 77<10000$, ce qui implique : $u_n < 100$.

Donc , pour avoir $u_n \ge 100$, puisque la suite est croissante, il faut que n soit supérieur à 4995.

Maintenant, pour
$$n = 5000 : u_{5000} \ge \sqrt{2.5000 + 1} > \sqrt{10000} = 100.$$

Donc le premier entier tel que $u_n \ge 100$ est au plus égale à n = 5000.

On peut donc affirmer que l'entier n cherché est compris entre 4995 et 5000.

