MATHÉMATIQUES II - ESSEC E 2015

Proposition de corrigé par David Meneu

Lycée Champollion - Grenoble, pour

I - Limite inférieure d'une suite et d'une fonction

Si a et b sont deux entiers tels que $a \leq b$, on notera $[\![a,b]\!] = \{k \in \mathbb{Z}, \ a \leq k \leq b\}$ l'intervalle d'entiers d'extrémités a et b.

Pour $(x_n)_{n\in\mathbb{N}}$ suite de réels et I ensemble fini d'entiers naturels, on notera $\min_{i\in I} x_i$ le plus petit élément de

l'ensemble $\{x_i, i \in I\}$. Par exemple, $\min_{i \in [1,9]} \frac{1}{i} = \frac{1}{9}$.

- $1. \ \, \text{Un exemple} : \left\{ \frac{(-1)^i}{i+1}, \ i \in \llbracket 1, 4 \rrbracket \right\} = \left\{ 1, \ -\frac{1}{2}, \ \frac{1}{3}, \ -\frac{1}{4}, \ \frac{1}{5} \right\}, \, \text{il est donc clair que} : \quad \min_{i \in \llbracket 0, 4 \rrbracket} \frac{(-1)^i}{i+1} = -\frac{1}{2}.$
- 2. Soit $(x_n)_{n\geqslant 0}$ une suite de réels positifs.
 - a) Pour n entier naturel fixé, on pose pour tout k de $\mathbb{N},\ u_n(k) = \min_{i \in [n,n+k]} x_i$

Ainsi : pour tout k de \mathbb{N} , $u_n(k)$ est la valeur minimale parmi les termes $x_n, x_{n+1}, \ldots, x_{n+k}$, tandis que $u_n(k+1)$ est la valeur minimale parmi les termes $x_n, x_{n+1}, \ldots, x_{n+k}, x_{n+k+1}$: il y a donc un terme de plus (x_{n+k+1}) dans cette deuxième liste qui coïncide par ailleurs avec la première, et donc :

- Soit $\min_{i \in [\![n,n+k+1]\!]} x_i = u_n(k+1)$ est l'un des x_j avec $n \leqslant j \leqslant n+k$: dans ce cas on a aussi $x_j = \min_{i \in [\![n,n+k]\!]} x_i$ et alors $u_n(k+1) = u_n(k)$
- soit $u_n(k+1) = x_{n+k+1}$ et cela signifie alors que : $\forall i \in [n, n+k], x_{n+k+1} \leqslant x_i$; mais alors : $x_{n+k+1} \leqslant \min_{i \in [n, n+k]} x_i$, c'est-à-dire : $u_n(k+1) \leqslant u_n(k)$.

Dans tous les cas : $\forall k \in \mathbb{N}, \ u_n(k+1) \leqslant u_n(k), \ \text{la suite} \ (u_n(k))_{k \geqslant 0} \ \text{et bien décroissante}.$

b) Tous les termes de la suite $(x_n)_{n\geqslant 0}$ sont positifs, il en va donc de même de deux de la suite $(u_n(k))_{k\geqslant 0}$. Cette dernière est donc décroissante et minorée par 0, elle est donc convergente, d'après le théorème de limite monotone.

On note $u_n = \lim_{k \to +\infty} u_n(k)$.

c) Comme $u_{n+1}(k) = \min_{i \in [n+1, n+k+1]} x_i$ et $u_n(k+1) = \min_{i \in [n, n+k+1]} x_i$: le même principe que précédemment s'applique, qu'on peut aussi exprimer ainsi :

 $\{x_{n+1},\ldots,x_{n+k+1}\}\subset\{x_n,\ldots,x_{n+k+1}\},\ \mathrm{donc}\ \min\{x_{n+1},\ldots,x_{n+k+1}\}\geqslant\min\{x_n,\ldots,x_{n+k+1}\},\ \mathrm{soit}:$

$$\forall k \in \mathbb{N}, \ u_n(k+1) \leqslant u_{n+1}(k)$$

D'après la question précédente, on peut alors passer à la limite dans cette inégalité quand k tend vers $+\infty$, et :

$$\forall n \in \mathbb{N}, \quad u_n \leqslant u_{n+1}$$

On a bien prouvé que la suite $(u_n)_{n\geqslant 0}$ est croissante.

d) Le théorème de limite monotone affirme bien que la suite $(u_n)_{n\geqslant 0}$ qui est croissante, admet une limite : elle est soit convergente (si elle est majorée), soit divergente vers $+\infty$.

Cette limite est dite limite inférieure de la suite $(x_n)_{n\geqslant 0}$ et est notée $\liminf_{n\to +\infty} x_n$.

3. Soient les deux suites réelles positives $(y_n)_{n\geqslant 0}$ et $(z_n)_{n\geqslant 0}$ définies par :

$$\forall n \in \mathbb{N}, \ y_n = 1 + (-1)^n$$

et

$$\forall n \in \mathbb{N}, \ z_n = \begin{cases} 2 & \text{si } n \text{ est pair} \\ n & \text{si } n \text{ est impair} \end{cases}$$

a) Remarquons d'emblée que l'expression de la suite $(y_n)_{n\geqslant 0}$ est, plus simplement :

$$\forall n \in \mathbb{N}, \ y_n = \begin{cases} 2 & \text{si } n \text{ est pair} \\ 0 & \text{si } n \text{ est impair} \end{cases}$$

Ainsi, pour tout entier $n \in \mathbb{N}$, et tout entier $k \in \mathbb{N}^*$: $\{y_i, i \in [n, n+k]\}$ contient toujours au moins deux termes consécutifs de la suite (y_n) , et en fait uniquement les valeurs 0 et 2, éventuellement répétées un certain nombre de fois.

On peut donc affirmer que : $\forall n \in \mathbb{N}, \ \forall k \in \mathbb{N}^*, \ u_n(k) = 0.$

La suite (z_n) , de son côté, a pour premiers termes : $2, 1, 2, 3, 2, 5, 2, 7, \ldots$ et donc

 $\forall k \in \mathbb{N}^*, \ u_0(k) = 1 = u_1(k)$ (dès que l'indice 1 est dans la liste des entiers [n, n+k], le terme $z_1 = 1$ est forcément la valeur minimale des termes considérés dans le calcul de $u_n(k)$), et :

 $\forall n \geq 2, \ \forall k \in \mathbb{N}^*, \ u_n(k) = 2$ (dès que $n \geq 2$ et $k \geq 1$, le terme 2 fait forcément partie de la liste de termes considérés, répété éventuellement plusieurs fois et accompagné de termes entiers qui lui sont supérieurs).

b) De ce qui précède on déduit immédiatement :

$$\liminf_{n \to +\infty} y_n = 0$$

Car dans ce cas, les suites $(u_n(k))_{k\geqslant 1}$ associées sont constantes nulles, ce qui entraı̂ne :

$$\forall n \in \mathbb{N}, \ u_n = \lim_{k \to +\infty} u_n(k) = 0.$$

On a ensuite:

$$\liminf_{n \to +\infty} z_n = 2$$

Car dans ce cas : la suite $(u_n)_n$ associée est stationnaire égale à 2, en effet :

$$u_0 = \lim_{k \to +\infty} u_0(k) = \lim_{k \to +\infty} 1 = 1 = u_1$$
, et pour tout $n \geqslant 2$, $u_n = \lim_{k \to +\infty} u_n(k) = \lim_{k \to +\infty} 2 = 2$.

4. a) On suppose ici que $(x_n)_{n\geq 0}$ est une suite croissante de réels positifs. La conséquence immédiate est que :

$$\forall n \in \mathbb{N}, \ \forall k \in \mathbb{N}^*, \ u_n(k) = \min_{i \in [\![n,n+k]\!]} x_i = x_n \ (\text{indépendant de } k\,!) \ \text{et donc} :$$

$$\forall n \in \mathbb{N}, \ u_n = \lim_{k \to +\infty} u_n(k) = x_n$$

Les suites $(x_n)_{n\geqslant 0}$ et $(u_n)_{n\geqslant 0}$ sont donc rigoureusement identiques, donc si la première converge en croissant vers un réel ℓ , il en est de même pour la seconde :

$$\lim_{n \to +\infty} u_n = \ell = \liminf_{n \to +\infty} x_n$$

b) Si cette fois, $(x_n)_{n\geqslant 0}$ est une suite décroissante de réels positifs : elle converge donc vers un réel $\ell\geqslant 0$, et par ailleurs :

$$\forall n \in \mathbb{N}, \ \forall k \in \mathbb{N}^*, \ u_n(k) = x_{n+k}, \ \mathrm{donc}: \quad \forall n \in \mathbb{N}, \ u_n = \lim_{k \to +\infty} u_n(k) = \lim_{k \to +\infty} x_{n+k} = \ell.$$

La suite $(u_n)_{n\geqslant 0}$ est donc constante, égale à ℓ ; il est donc clair que dans ce cas :

$$\lim_{n \to +\infty} u_n = \ell = \liminf_{n \to +\infty} x_n$$

c) i. Soient $\alpha_1, \alpha_2, \ldots, \alpha_r$ des réels données et soit I un intervalle ouvert de \mathbb{R} . On suppose que pour tout i tel que $1 \leqslant i \leqslant r$, α_i appartient à I: il est donc alors évident que $\min_{i \in [\![1,r]\!]} \alpha_i$ appartient encore à I, puisque cette valeur minimale est l'un des r réels!

ii. Soit maintenant $(x_n)_{n\geqslant 0}$ une suite de réels positifs convergente vers un réel ℓ positif : alors par définition de la convergence d'une suite, tout intervalle I contenant ℓ , contient aussi tous les termes de la suite (x_n) sauf peut-être un nombre fini d'entre eux : il existe un entier N, qui dépend de I tel que : $\forall n \geqslant N, \ x_n \in I$.

Mais alors, pour tout entier $k \in \mathbb{N}$, et tout $n \ge N$: les réels $\{x_n, \ldots, x_{n+k}\}$ appartiennent tous à I, donc leur minimum aussi: $\forall n \ge N, \ \forall k \in \mathbb{N}, \ u_n(k) \in I$.

Comme la suite $(u_n(k))_{k\in\mathbb{N}}$ est décroissante : sa limite u_n est alors, par passage à la limite, élément ou extrémité gauche de I.

Et comme la suite $(u_n)_{n\in\mathbb{N}}$ est ensuite croissante : il existe un rang $N_1\geqslant N$ tel que pour tout entier $n\geqslant N_1,\ u_n$ est élément de I.

Bref, si on récapitule, on a démontré que : pour tout intervalle ouvert I contenant ℓ , il existe un entier N_1 ne dépendant que de I, tel que I contienne aussi tous les termes de la suite (u_n) à partir du rang N_1 .

C'est la définition de la convergence de la suite (u_n) vers ℓ ! Donc :

si
$$(x_n)$$
 converge vers ℓ , alors $\liminf_{n \to +\infty} x_n = \ell$

- 5. Soit f une fonction continue sur \mathbb{R}_+ , à valeurs dans \mathbb{R}_+ .
 - a) Pour x réel positif fixé, on définit la fonction φ_x sur \mathbb{R}_+ par

$$\forall h \geqslant 0, \quad \varphi_x(h) = \min_{u \in [x, x+h]} f(u).$$

Pour tous réels positifs h et h' tels que $h \leq h'$:

 $[x,x+h]\subset [x,x+h'],$ donc $\{f(u)|\ u\in [x,x+h]\}\subset \{f(u)|\ u\in [x,x+h']\},$ et par conséquent :

$$\min_{u \in [x, x+h']} f(u) \leqslant \min_{u \in [x, x+h]} f(u), \text{ soit } : \quad \forall (h, h') \in (\mathbb{R}_+)^2, \quad h \leqslant h' \Longrightarrow \varphi_x(h') \leqslant \varphi_x(h)$$

ce qui prouve bien que la fonction φ_x est décroissante sur \mathbb{R}^+

- b) Il est aussi clair que, puisque f est à valeurs dans \mathbb{R}_+ , φ_x est une fonction minorée par 0, décroissante sur \mathbb{R}^+ : le théorème de limite monotone pour les fonctions s'applique, qui assure que la fonction φ_x de la variable $h \in \mathbb{R}_+$, admet une limite quand h tend vers $+\infty$: on note $\Phi_x = \lim_{h \to +\infty} \varphi_x(gh)$ pour tout $x \in \mathbb{R}_+$.
- c) On reprend ici, avec des fonctions, un raisonnement analogue à celui mené avec des suites :

soit $(x, x') \in (\mathbb{R}_+)^2$ tel que $x \leq x'$: alors pour tout réel $h \geqslant 0$, on peut écrire :

$$x' + h = x + (x' - x) + h = x + h'$$
, où $h' = x' - x + h \ge 0$.

Et comme alors : $[x', x' + h] \subset [x, x' + h] = [x, x + h']$, donc : $\varphi_{x'}(h) \geqslant \varphi_x(h')$.

Quand h tend vers $+\infty$, h'=x'-x+h aussi, et par passage à la limite dans cette inégalité :

$$\forall (x, x') \in (\mathbb{R}_+)^2, \quad x \leqslant x' \Longrightarrow \Phi_x \leqslant \Phi_{x'}$$

On a bien démontré de la sorte, que la fonction $x \mapsto \Phi_x$ est croissante sur \mathbb{R}_+ .

d) La fonction $x \mapsto \Phi_x$ est ainsi croissante sur \mathbb{R}^+ : d'après le théorème de limite monotone pour les fonctions, cette fonction-ci admet une limite en $+\infty$, qui est soit finie, soit égale à $+\infty$.

On la nomme la **limite inférieure de** f, notée $\liminf_{n\to+\infty} f(x)$.

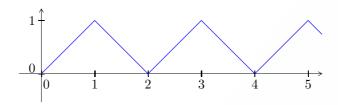
e) Un exemple : soit f la fonction continue sur \mathbb{R}_+ définie par

$$f(x) = \begin{cases} x & \text{si } x \in [0, 1] \\ 2 - x & \text{si } x \in [1, 2] \end{cases}$$

et telle que f(x) = f(x+2) pour tout $x \in \mathbb{R}_+$ (fonction périodique de période 2).

i. Graphiquement :

O Major Prépa



- ii. Pour x positif et h supérieur ou égal à 2: l'intervalle [x, x + h] est un intervalle de longueur $h \ge 2$, donc sur cet intervalle, f atteint son minimum 0, et $\varphi_x(h) = 0$.
- iii. La fonction φ_x étant constante nulle sur $[2; +\infty[: \lim_{h \to +\infty} \varphi_x(h) = 0 = \Phi_x, \text{ et par conséquent}:$

$$\lim_{x \to +\infty} \Phi_x = 0 = \liminf_{x \to +\infty} f(x).$$

- f) f est de nouveau une fonction quelconque continue sur \mathbb{R}_+ à valeurs dans \mathbb{R}_+ , et on reprend les notations de 5.a) et 5.b).
 - i. Soit x un réel positif : pour tout h positif, il est évident que $f(x) \ge \min_{u \in [x,x+h]} f(u) \iff f(x) \ge \varphi_x(h)$.
 - ii. Le passage à la limite (qui existe) dans l'inégalité précédente quand h tend vers $+\infty$ donne :

$$f(x) \geqslant \Phi_x$$

iii. On suppose ici que $\ell = \liminf_{x \to +\infty} f(x) > 0$: par définition de la limite $\ell = \lim_{x \to +\infty} \Phi_x$, pour tout $\varepsilon > 0$, il existe un réel $x_0 \in \mathbb{R}_+$ tel que : $\forall x \in \mathbb{R}_+$, $\ell - \varepsilon \leqslant \Phi_x$.

En posant
$$\varepsilon = \frac{\ell}{2} > 0$$
, $\ell - \varepsilon = \frac{\ell}{2} = \varepsilon > 0$, et : $\forall x \geqslant x_0, \ f(x) \geqslant \varepsilon$.

g) Soient f et g deux fonctions continues de \mathbb{R}_+ dans \mathbb{R}_+ telles que $f(x) \geqslant g(x)$ pour tout x positif, et $\lim_{x \to +\infty} g(x) = \ell \geqslant 0$.

Par définition de la limite en $+\infty$ de g, cela signifie que :

$$\forall \varepsilon > 0, \ \exists x_0 > 0; \ \forall x \geqslant x_0, \quad \ell - \varepsilon \leqslant g(x) \leqslant \ell + \varepsilon.$$

Mais alors, pour tout $x \ge x_0$ et tout $h \ge 0$:

$$\forall u \in [x, x+h], \quad \ell - \varepsilon \leqslant g(u) \leqslant f(u), \, \mathrm{donc} \, \min_{u \in [x, x+h]} f(x) \geqslant \ell - \varepsilon.$$

Par passage à la limite quand h tend vers $+\infty$, on en déduit : $\forall x \ge x_0, \ \Phi_x \ge \ell - \varepsilon$.

Et par passage à la limite dans cette dernière inégalité, cette fois quand x tend vers $+\infty$:

$$\liminf_{x \to +\infty} f(x) \geqslant \ell - \varepsilon.$$

Ce résultat ne dépend plus de x_0 , ni de ε d'ailleurs : $\forall \varepsilon > 0$, $\liminf_{x \to +\infty} f(x) \geqslant \ell - \varepsilon$, ce qui implique :

$$\liminf_{x \to +\infty} f(x) \geqslant \ell.$$

(sinon, $\liminf_{x\to +\infty} f(x) < \ell$ et il existe $\varepsilon > 0$ tel que $\liminf_{x\to +\infty} f(x) < \ell - \varepsilon$, ce qui est absurde!)

II - Lois sous-exponentielles

Dans la suite du problème, toutes les variables aléatoires sont définies sur un espace probabilisé (Ω, \mathcal{A}, P) . On notera comme d'habitude, sous réserve d'existence, E(X) et V(X) l'espérance et la variance d'une variable aléatoire réelle X.

Si x est une variable aléatoire réelle positive de fonction de répartition F, on notera systématiquement \overline{F} la queue de la répartition définie par $\overline{F}(x) = 1 - F(x) = P(X > x)$ pour tout x positif.

6. Soient X et Y deux variables aléatoires indépendantes à valeurs dans \mathbb{N} . Pour tout entier naturel n, on pose :

$$\begin{cases} p_X(n) &= P(X=n) \\ p_Y(n) &= P(Y=n) \\ p_{X+Y}(n) &= P(X+Y=n) \end{cases}$$

Pour tout entier naturel n, $[X+Y=n]=\bigcup_{k=0}^n [X=k]\cap [Y=n-k]$; par union disjointe, puis par indépendance des v.a.r. X et Y:

$$P(X+Y=n) = \sum_{k=0}^{n} P([X=k] \cap [Y=n-k]) = \sum_{k=0}^{n} P(X=k) \times P(Y=n-k) \iff p_{X+Y}(n) = \sum_{k=0}^{n} p_{X}(k) p_{Y}(n-k)$$

Par analogie, on admet que si X et Y sont deux variables aléatoires rélles positives indépendantes, admettant respectivement les densités f_X et f_Y continues sur \mathbb{R}_+^* et continues à droite en 0, la variable X+Y admet une densité $f_X * f_Y$ définie, pour x positif, par

$$(f_X * f_Y)(x) = \int_0^x f_X(u) f_Y(x - u) du.$$

(C'est le produit de convolution des deux densités).

On notera F_{X+Y} la fonction de répartition de la variable aléatoire X+Y.

- 7. Soit λ un réel strictement positif et soient X et Y deux variables aléatoires indépendantes de loi exponentielle de paramètre λ . On note f une densité commune et F leur fonction de répartition. On prendra pour tout x positif ou nul, $f(x) = \lambda e^{-\lambda x}$.
 - a) pour tout réel x positif, d'après le cours sur la loi exponentielle :

$$F(x) = 1 - e^{-\lambda x}$$
 et $\overline{F}(x) = 1 - F(x) = e^{-\lambda x}$

b) Pour tout réel positif $x: \forall u \in [0, x], \ u - x \in [0, x]$ donc :

$$(f * f)(x) = \int_0^x f(u) \cdot f(x - u) du = \int_0^x \lambda \cdot e^{-\lambda u} \cdot \lambda \cdot e^{-\lambda \cdot (x - u)} du = \lambda^2 \cdot \int_0^x e^{-\lambda x} dx = \lambda^2 \cdot x \cdot e^{-\lambda x}$$

c) La variable aléatoire X + Y est à valeurs positives comme somme de telles variables, donc : pour tout réel positif x,

$$F_{X+Y} = \int_0^x (f * f)(t) dt = \lambda \int_0^x t \cdot \lambda \cdot e^{-\lambda t} dt$$

On réalise ici une intégration par parties en posant

$$u(t) = t \longrightarrow u'(t) = 1$$

 $v'(t) = \lambda \cdot e^{-\lambda t} \longrightarrow v(t) = -e^{-\lambda t}$

Les fonctions u et v sont de classe \mathcal{C}^1 sur \mathbb{R}_+ , donc par intégration par parties :

$$\forall x \in \mathbb{R}_+, \quad F_{X+Y}(x) = \lambda \cdot \left(\left[-t \cdot e^{-\lambda t} \right]_0^x + \int_0^x e^{-\lambda t} dt \right) = -\lambda \cdot x \cdot e^{-\lambda x} + \left[-e^{-\lambda t} \right]_0^x = 1 - (\lambda x + 1) \cdot e^{-\lambda x}$$

d) Au vu de tous les résultats précédents

pour tout
$$x \in \mathbb{R}_+$$
, $\overline{F_{X+Y}}(x) = (\lambda x + 1).e^{-\lambda x}$ et $\frac{\overline{F_{X+Y}}(x)}{\overline{F}(x)} = \lambda x + 1 \xrightarrow[x \to +\infty]{} +\infty$ puisque $\lambda > 0$.

8. Soit X une variable aléatoire positive de fonction de répartition F. On dit que X est à support illimité à droite si pour tout x positif, $\overline{F}(x) > 0$.

Soient X et Y deux variables aléatoires indépendantes positives, de même loi à support illimité à droite, de fonction de répartition commune F.

a) Comme les variables aléatoires X et Y sont à valeurs positives : $X+Y \geqslant \max(X,Y)$, donc $[\max(X,Y) > x]$ implique [X+Y>x] : $[\max(X,Y)>x] \subset [\max(X,Y)>x]$, et par croissance de la probabilité,

$$\forall x \in \mathbb{R}_+, \quad P(\max(X,Y) > x) \leqslant P(X+Y > x) \iff \overline{F_{X+Y}}(x) \geqslant P(\max(X,Y) > x)$$

b) Pour tout réel positif $x : [\max(X, Y) \leq x] = [X \leq x] \cap [Y \leq x]$. Comme X et Y sont indépendantes et de même loi :

$$\forall x \in \mathbb{R}_+, \quad P(\max(X, Y) \leqslant x) = P(X \leqslant x) \times P(Y \leqslant x) = F^2(x)$$

$$\iff P(\max(X, Y) > x) = 1 - P(\max(X, Y) \leqslant x) = 1 - F^2(x)$$

c) Pour tout réel positif $x: \frac{1-F^2(x)}{\overline{F}(x)} = \frac{(1-F(x))(1+F(x))}{1-F(x)} = 1+F(x)$. Or $\lim_{x\to +\infty} F(x) = 1$ puisque F est une fonction de répartition, donc :

$$\lim_{x \to +\infty} \frac{1 - F^2(x)}{\overline{F}(x)} = \lim_{x \to +\infty} 1 + F(x) = 2$$

d) Au vu de ce qui précède : le résultat de la question 5.g) de la partie I s'applique avec $f: x \mapsto \frac{\overline{F_{X+Y}}(x)}{\overline{F}(x)}$ et $g: x \mapsto 1 - F^2(x)$ qui sont deux fonctions continues sur \mathbb{R}_+ vérifiant : $\forall x \in \mathbb{R}_+$, $f(x) \geqslant g(x)$ et $\lim_{x \to +\infty} g(x) = 2$, donc :

$$\liminf_{x \to +\infty} \frac{\overline{F_{X+Y}}(x)}{\overline{F}(x)} \geqslant 2$$

9. Soit X une variable aléatoire positive de fonction de répartition F. On suppose que la loi de X est à support illimité à droite. On dit que cette loi est sous-exponentielle si

$$\lim_{x \to +\infty} \frac{\overline{F_{X+Y}(x)}}{\overline{F}(x)} = 2$$

où comme dans les notations précédentes, F_{X+Y} désigne la fonction de répartition de la somme des deux variables aléatoires réelles positives X et Y indépendantes, de même loi et de fonction de répartition F. On considère alors deux variables aléatoires réelles positives, indépendantes X et Y de même loi sous-exponentielle.

a) Par définition de la probabilité conditionnelle : $P_{[X+Y>x]}(X>x) = \frac{P([X+Y>x]\cap [X>x])}{P(X>x)};$ or [X>x] implique [X+Y>x], donc $[X+Y>x]\cap [X>x] = [X>x]$, et : $P_{[X+Y>x]}(X>x) = \frac{P(X>x)}{P(X+Y>x)} = \frac{\overline{F}(x)}{\overline{F}_{X+Y}(x)}.$ Ainsi, par inverse de la limite définissant une loi sous-exponentielle :

$$\lim_{x \to +\infty} P_{[X+Y>x]}(X>x) = \frac{1}{2}$$

b) D'après les résultats précédents

$$\lim_{x \to +\infty} \frac{P(X+Y>x)}{P(\max(X,Y)>x)} = \lim_{x \to +\infty} \frac{P(X+Y>x)}{P(X>x)} \times \frac{P(X>x)}{P(\max(X,Y)>x)}$$
$$= \lim_{x \to +\infty} \frac{\overline{F_{X+Y}}(x)}{\overline{F}(x)} \times \lim_{x \to +\infty} \frac{\overline{F}(x)}{1 - F^2(x)} = 2 \times \frac{1}{2} = 1.$$

c) Soit x un réel positif quelconque, mais fixé : il est clair que les deux événements $[\max(X,Y) \leqslant x]$ et $[\max(X,Y) > x]$, contraires l'un de l'autre, forment un système complet d'événements, avec lequel la formule des probabilités totales s'écrit pour l'événement [X+Y>x]:

$$P(X+Y>x) = P([X+Y>x] \cap [\max(X,Y) \leqslant x]) + P([X+Y>x] \cap [\max(X,Y)>x])$$

Or : si $[\max(X,Y) > x]$, alors [X+Y>x] l'est aussi : $[\max(X,Y)>x] \subset [X+Y>x]$, donc on a bien :

$$P(X+Y>x) = P([X+Y>x] \cap [\max(X,Y) \leqslant x]) + P([X+Y>x])$$

d) La relation précédente donne :

$$\frac{P([X+Y>x] \cap [\max(X,Y) \leqslant x])}{P(\max(X,Y)>x)} = \frac{P(X+Y>x) - P(\max(X,Y)>x)}{P(\max(X,Y)>x)} = \frac{P(X+Y>x)}{P(\max(X,Y)>x)} - 1$$

donc d'après 9.b):

$$\lim_{x \to +\infty} \frac{P\big([X+Y>x] \cap [\max(X,Y) \leqslant x]\big)}{P(\max(X,Y)>x)} = 1 - 1 = 0.$$

e) Le résultat précédent exprime que lorsque x devient très grand, le fait que la somme X+Y dépasse x, sera essentiellement dû au fait que l'une des deux variables aléatoires (la plus grande) dépasse elle-même x, de façon très prépondérante par rapport à l'obtention d'une telle valeur supérieure à x par cumul de deux valeurs de X et Y elles-mêmes inférieures à x. L'une des deux variables aléatoires finit presque sûrement par l'emporter sur l'autre.

III - Problèmes de queues

Soit f une densité de probabilité sur \mathbb{R} que l'on suppose nulle sur \mathbb{R}^*_+ et continue sur \mathbb{R}^*_+ , et F la fonction de répartition associée. On dit que la loi de probabilité définie par la densité f possède **une loi à queue lourde** si pour tout λ strictement positif, l'intégrale $\int_1^{+\infty} f(x)e^{\lambda x} dx$ est divergente, c'est-à-dire que pour tout réel $\lambda > 0$,

$$\lim_{a \to +\infty} \int_{1}^{a} f(x)e^{\lambda x} dx = +\infty.$$

10. Soit X une variable aléatoire de densité f. S'il existait le moindre réel $x_0 \in \mathbb{R}_+^*$ tel que $\overline{F}(x_0) = 0$: alors par décroissance et continuité de la fonction d'antirépartition sur \mathbb{R}_+^* (propriétés directement héritées de F puisque $\overline{F} = 1 - F$), on aurait : $\forall x \geqslant x_0$, $\overline{F}(x) = 0 \iff F(x) = 1$. La fonction F, constante sur $]x_0; +\infty[$, aurait sur cet intervalle une dérivée f nulle, ce qui rendrait toute intégrale $\int_1^{+\infty} f(x)e^{\lambda x} dx$ convergente!

Donc une loi à queue lourde est à support illimité à droite.

- 11. Étude de quelques lois particulières :
 - a) Si X suit la loi exponentielle de paramètre $\lambda > 0$, alors une densité f de X est bien nulle sur \mathbb{R}_+^* , continue sur \mathbb{R}_+^* , et a pour expression : $\forall x \in \mathbb{R}_+^*$, $f(x) = \lambda . e^{-\lambda x}$.

Mais alors : pour tout réel μ strictement compris entre 0 et λ :

$$\int_{1}^{+\infty} f(x)e^{\mu x} dx = \lambda \int_{1}^{+\infty} e^{(\mu - \lambda)x} dx \text{ est une intégrale impropre convergente, puisque } \mu - \lambda < 0.$$
 Une loi exponentielle n'est donc pas à queue lourde.

- b) Soit f la fonction d'expression $f(x) = \frac{1}{(1+x)^2}$ si $x \ge 0$, et f(x) = 0 pour tout x < 0.
 - i. La fonction f est bien positive et continue sur \mathbb{R}_{-}^* comme fonction nulle, positive sur \mathbb{R}_{+} et continue sur \mathbb{R}_{+}^* : elle est donc positive sur tout \mathbb{R} , et continue sur \mathbb{R} sauf en 0. De plus :

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{0}^{+\infty} \frac{1}{(1+x)^2} dx = \lim_{a \to +\infty} \left[-\frac{1}{1+x} \right]_{0}^{a} = \lim_{a \to +\infty} -\frac{1}{1+a} + 1 = 1$$

Donc f est bien une densité de probabilité.

ii. Soit λ strictement positif fixé : $(1+x)^2 \underset{x\to +\infty}{\sim} x^2$, et $x^2=o(e^{\lambda x})$ par croissances comparées, vu que $\lambda>0$: cela signifie que $\lim_{x\to +\infty} \frac{e^{\lambda x}}{(1+x)^2}=+\infty$; il existe donc bien un réel $x_0>0$ à partir duquel :

$$\forall x \geqslant x_0, \quad \frac{e^{\lambda x}}{(1+x)^2} \geqslant 1.$$

iii. Le résultat précédent implique que la fonction $x \mapsto f(x)e^{\lambda x}$ ne tend pas vers 0 lorsque x tend vers $+\infty$, donc ne vérifie pas le critère nécessaire de convergence de l'intégrale impropre $\int_1^{+\infty} e^{\lambda x} dx$: cela suffit pour pouvoir affirmer qu'au contraire, cette intégrale est toujours divergente, et ce quel que soit $\lambda > 0$: la loi définie par f est bien à queue lourde.

© Major-Prépa

- c) Soit Z une variable aléatoire de loi normale centrée réduite, et X la variable aléatoire définie par $X = e^Z$.
 - i. On vérifie que X est une variable à densité par le calcul de sa fonction de répartition F_X . Il est d'abord clair que $X=e^Z$ est à valeurs strictement positives, donc :

$$\forall x \in \mathbb{R}_-, \ F_X(x) = P(X \leqslant x) = 0. \ \text{Pour tout } x > 0:$$

$$F_X(x) = P(X \le x) = P(e^Z \le x)$$

= $P(Z \le \ln(x))$ par stricte croissance et continuité de ln sur \mathbb{R}_+^*
= $\Phi(\ln(x))$

où Φ est la fonction de répartition de la loi normale centrée, réduite.

La fonction
$$F_X: x \mapsto \begin{cases} 0 \text{ si } x \leq 0 \\ \Phi(\ln(x)) \text{ si } x > 0 \end{cases}$$
 est ainsi de classe \mathcal{C}^1 sur $]-\infty;0[$ et $]0;+\infty[$.

Comme : $\lim_{x\to 0^+} \ln(x) = -\infty$ et $\lim_{X\to -\infty} \Phi(X) = 0$, alors $\lim_{x\to 0^+} \Phi(\ln(x)) = 0 = F_X(0)$, donc F_X est continue sur \mathbb{R} ; finalement, X est bien une variable à densité, et une densité f de X est obtenue par dérivation de F_X sur \mathbb{R}_+^* ; en 0, on donne à f la valeur arbitraire 0 et ainsi :

$$\forall x \in]-\infty;0], \ f(x) = 0 \text{ et } \forall x \in]0;+\infty[, \ f(x) = \frac{1}{x} \cdot \Phi'(\ln(x)) = \frac{1}{x\sqrt{2\pi}} \cdot e^{-[\ln(x)]^2/2}$$

ii. Soit λ strictement positif. Lorsque x est au voisinage de $+\infty$, on écrit :

$$\lambda x - \frac{1}{2} \left(\ln(x) \right)^2 - \ln(x) = x \left[\lambda - \frac{1}{2} \frac{\left(\ln(x) \right)^2}{x} - \frac{\ln(x)}{x} \right], \text{ où par croissances comparées :}$$

$$\lim_{x\to +\infty} \frac{\left(\ln(x)\right)^2}{x} = 0 = \lim_{x\to +\infty} \frac{\ln(x)}{x}, \text{ donc}: \quad \lim_{x\to +\infty} \lambda - \frac{1}{2} \frac{\left(\ln(x)\right)^2}{x} - \frac{\ln(x)}{x} = \lambda > 0, \text{ et ainsi}:$$

$$\lim_{x \to +\infty} x \left[\lambda - \frac{1}{2} \frac{\left(\ln(x)\right)^2}{x} - \frac{\ln(x)}{x} \right] = +\infty = \lim_{x \to +\infty} \lambda x - \frac{1}{2} \left(\ln(x)\right)^2 - \ln(x)$$

iii. Soit $\lambda > 0$; pour tout x strictement positif, on peut écrire :

$$f(x)e^{\lambda x} = \frac{1}{x\sqrt{2\pi}}e^{-[\ln(x)]^2/2} \cdot e^{\lambda x} = \frac{1}{\sqrt{2\pi}}e^{\lambda x - \frac{1}{2}[\ln(x)]^2 - \ln(x)} \text{ puisque } \frac{1}{x} = x^{-1} = e^{-\ln(x)}. \text{ Comme d'après la question précédente, } \lim_{x \to +\infty} \lambda x - \frac{1}{2}\left(\ln(x)\right)^2 - \ln(x) = +\infty, \text{ alors par composition avec exp qui tend vers } +\infty \text{ en } +\infty$$

$$\forall x \geqslant x_0, \quad f(x)e^{\lambda x} \geqslant 1.$$

iv. Là enncore, pour tout $\lambda > 0$, la fonction $x \mapsto f(x)e^{\lambda x}$ ne vérifie pas le critère nécessaire, non suffisant de convergence de l'intégrale imporpre $\int_{1}^{+\infty} f(x)e^{\lambda x} dx$, à savoir : $\lim_{x \to +\infty} f(x)e^{\lambda x} = 0$, impossible quel que soit $\lambda > 0$.

La loi de X est bien à queue lourde.

On désigne désormais par X une variable aléatoire positive de loi à support illimité à droite et admettant une densité f continue sur \mathbb{R}_+^* et continue à droite en 0. On note F la fonction de répartition associée, et on pose alors $r(x) = \frac{f(x)}{\overline{F}(x)}$ et $R(x) = \ln(\overline{F}(x))$, pour x positif.

12. La fonction f étant continue sur \mathbb{R}_+^* , et continue à droite en 0, on peut écrire :

$$\forall x \in \mathbb{R}_{+}, \ \int_{0}^{x} r(y) dy = \int_{0}^{x} \frac{f(y)}{1 - F(y)} dy = \int_{0}^{x} \frac{F'(y)}{1 - F(y)} dy$$
$$= \left[-\ln\left(1 - F(y)\right) \right]_{0}^{x} = -\ln\left(1 - F(x)\right) + \ln\left(1 - F(0)\right)$$

C Major Prépa

$$= -\ln\left(\overline{F}(x)\right) = R(x)$$

puisque F(0) = 0, ce qui donne bien :

$$\forall x \in \mathbb{R}_+, \quad \ln\left(\overline{F}(x)\right) = -\int_0^x r(y) dy \iff \forall x \in \mathbb{R}_+, \quad \overline{F}(x) = \exp\left(-\int_0^x r(y) dy\right)$$

- 13. On suppose que $\lim_{n \to +\infty} \inf \frac{R(x)}{x} > 0$.
 - a) La fonction $x \mapsto \frac{R(x)}{x}$ est continue sur \mathbb{R}_+^* , et se prolonge par continuité en 0 :

$$\lim_{x \to 0^+} \frac{R(x)}{x} = \lim_{x \to 0^+} \frac{1}{x} \int_0^x r(y) dy = r(0) = \frac{f(0)}{\overline{F}(0)} = f(0).$$

Cette fonction est également à valeurs positives : $\forall x \in \mathbb{R}_+^*$, $R(x) = \int_0^x r(y) dy \ge 0$ par positivité de l'intégrale, la fonction $r: y \mapsto \frac{f(y)}{\overline{F}(y)}$ étant continue, positive sur \mathbb{R}^+ .

Le résultat de la question 5.f)iii. s'applique ici avec cette fonction, qui assure qu'il existe deux réels x_0 et ε strictement positifs tels que :

$$\forall x \geqslant x_0, \ \frac{R(x)}{x} \geqslant \varepsilon \iff \forall x \geqslant x_0, \ R(x) \geqslant \varepsilon x \iff \forall x \geqslant x_0, \ -\ln\left(\overline{F}(x)\right) \geqslant \varepsilon x \iff \forall x \geqslant x_0, \ \overline{F}(x) \leqslant e^{-\varepsilon x}$$

b) Soit λ tel que $0 < \lambda < \varepsilon$. Soit A strictement positif donné; dans l'intégrale $\int_0^A f(x)e^{\lambda x} dx$, on réaliste une intégration par parties en posant :

$$u(x) = e^{\lambda x} \longrightarrow u'(x) = \lambda . e^{\lambda x}$$

 $v'(x) = f(x) \longrightarrow v(x) = -\overline{F}(x)$

Les fonctions u et v (ou du moins leur restriction à \mathbb{R}_+) sont bien de classe \mathcal{C}^1 sur \mathbb{R}_+ , donc par intégration par parties :

$$\begin{split} \int_0^A f(x) e^{\lambda x} \mathrm{d}x &= \left[-e^{\lambda x} \overline{F}(x) \right]_0^A + \int_0^A \lambda e^{\lambda x} \overline{F}(x) \mathrm{d}x \\ &= -e^{\lambda A} \overline{F}(A) + e^0 \overline{F}(0) + \lambda \int_0^A e^{\lambda x} \overline{F}(x) \mathrm{d}x \end{split}$$

Ce qui est bien : $\int_0^A e^{\lambda x} f(x) dx = 1 - \overline{F}(A) e^{\lambda A} + \lambda \int_0^A e^{\lambda x} \overline{F}(x) dx \quad \text{puisque } \overline{F}(0) = P(X > 0) = 1.$

c) Avec les notations introduites à la question 13.a) : pour $A>x_0$, on peut écrire : $0\leqslant \overline{F}(A)e^{\lambda A}\leqslant e^{(\lambda-\varepsilon)A}$ où $\lambda-\varepsilon<0$.

Le théorème d'encadrement permet alors d'écrire : $\lim_{A \to +\infty} \overline{F}(A)e^{\lambda A} = 0.$

De plus, l'inégalité : $\forall x \geqslant x_0$, $(0 \leqslant) \overline{F}(x)e^{\lambda x} \leqslant e^{(\lambda - \varepsilon)x}$ où $\int_{x_0}^{+\infty} e^{(\lambda - \varepsilon)x} dx$ converge puisque $\lambda - \varepsilon < 0$,

assure par comparaison d'intégrales de fonctions continues, positives, que $\int_{x_0}^{+\infty} \overline{F}(x)e^{\lambda x} dx$ converge.

Par continuité de la fonction $x \mapsto \overline{F}(x)e^{\lambda x}$ sur \mathbb{R}_+ , l'intégrale $\int_0^{+\infty} \overline{F}(x)e^{\lambda x} dx$ est convergente, donc finalemement :

Il existe $\lambda > 0$ tel que $\int_0^{+\infty} f(x)e^{\lambda x} dx$ converge, donc la loi de X n'est pas à queue lourde.

14. On rappelle l'inégalité de Markov : si Z est une variable aléatoire positive admettant l'espérance E(Z), alors pour tout α strictement positif, on a

$$P(Z \geqslant \alpha) \leqslant \frac{1}{\alpha} E(Z)$$

9

On suppose maintenant que la loi de X n'est pas à queue lourde.

C Major-Prépa

- a) Par négation de la proposition définissant une loi à queue lourde : il existe $\lambda > 0$ tel que l'intégrale $\int_{0}^{+\infty} f(x)e^{\lambda x} dx$. Comme la fonction $x \mapsto f(x)e^{\lambda x}$ est positive sur \mathbb{R}_{+} (produit de deux fonctions positives sur cet intervalle) et nulle sur \mathbb{R}_{-}^{*} , cela revient à dire que l'intégrale $\int_{-\infty}^{+\infty} f(x)e^{\lambda x} dx$ est absolument convergente, donc que $c = E(e^{\lambda X})$ existe, d'après le théorème de transfert.
- b) Soit x strictement positif : la variable aléatoire $Z=e^{\lambda X}$ est positive et admet une espérance, donc l'inégalité de Markov s'applique à celle-ci et donne, pour $\alpha=e^{\lambda x}>0$:

$$P\big(e^{\lambda X} > e^{\lambda x}\big) \leqslant \frac{1}{e^{\lambda x}} E\big(e^{\lambda X}\big) \iff P(X > x) \leqslant e^{-\lambda x} \cdot c \iff \overline{F}(x) \leqslant c \cdot e^{-\lambda x}$$

L'égalité $P(e^{\lambda X} > e^{\lambda x}) = P(X > x)$ étant assurée par la stricte croissance et bijectivité de exp de \mathbb{R} dans \mathbb{R}_{+}^{*} .

c) De l'inégalité précédente, on tire, par stricte croissance de ln sur \mathbb{R}_+^* :

De l'inégalité précèdente, on tire, par stricte croissance de ln sur
$$\mathbb{R}_+^*$$
: $\forall x > 0$, $\ln(\overline{F}(x)) \leq \ln(c) - \lambda x \iff R(x) = -\ln(\overline{F}(x)) \geq \lambda x - \ln(c) \iff \frac{R(x)}{x} \geq \lambda - \frac{\ln(c)}{x}$.

On cherche ici à se rapporcher de la situation de la question 5.g) de la Partie I, avec $f: x \mapsto \frac{R(x)}{x}$ bien continue sur \mathbb{R}_+ (après prolongement par continuité en 0), à valeurs dans \mathbb{R}_+ comme on a déjà eu l'occasion de le justifier; il faut alors prendre la fonction $g: x \mapsto \max\left(\lambda - \frac{\ln(c)}{x}, 0\right)$ pour avoir une deuxième fonction continue que \mathbb{R}^n deuxième fonction continue sur \mathbb{R}_+ , à valeurs positives et telle que : $\forall x \in \mathbb{R}_+$, $f(x) \geqslant g(x)$.

Lorsque $x \to +\infty$: $\lambda - \frac{\ln(c)}{x}$ tend vers $\lambda > 0$, donc c'est aussi la valeur de $\lim_{x \to +\infty} g(x)$: le résultat de la question 5.g) de la partie I s'applique, qui permet d'affirmer que $\lim_{n\to+\infty} \frac{R(x)}{r} \geqslant \lambda > 0$.

On a donc prouvé, dans les questions 12. à 14., l'équivalence :

$$X$$
 n'est pas à queue lourde $\iff \liminf_{n \to +\infty} \frac{R(x)}{x} > 0.$

La condition $\lim_{n\to +\infty} \inf \frac{R(x)}{x} > 0$ n'est pas forcément agréable à vérifier pour prouver qu'une loi possède une queue lourde. De ce fait, on introduit une autre notion plus simple dont on va montrer qu'elle suffit à assurer cette propriété.

15. Soit X une variable aléatoire positive de fonction de répartition F. On dit que la loi de X possède une queue longue si pour tout ε strictement positif, il existe un réel A strictement positif tel que pour tout réel $x \ge A$, et tout réel $y \in [0; 1]$, on a :

$$\left| \frac{\overline{F}(x+y)}{\overline{F}(x)} - 1 \right| < \varepsilon.$$

Dans la suite, F désigne la fonction de répartition d'une variable aléatoire X qui suit une telle loi.

a) La définition qui précède est exactement la définition de la limite : $\lim_{x \to +\infty} \frac{F(x+y)}{\overline{F}(x)} - 1 = 0$

 $\iff \lim_{x\to +\infty} \frac{\overline{F}(x+y)-\overline{F}(x)}{\overline{F}(x)}=0$, sachant que le réel y ne dépend ni de ε , ni de A: il peut être fixé quelconque dans [0; 1] à n'importe quel moment.

b) Il suffit de reprendre ici la relation entre F et \overline{F} :

$$\forall (x,y) \in (\mathbb{R}_+^*)^2, \quad \overline{F}(x+y) - \overline{F}(x) = 1 - F(x+y) - (1 - F(x)) = F(x) - F(x+y).$$

 $\lim_{x \to +\infty} \frac{F(x) - F(x+y)}{\overline{F}(x)} = 0 \iff \lim_{x \to +\infty} \frac{F(x+y) - F(x)}{\overline{F}(x)} = 0 \text{ (le changement des signes au } F(x) + \frac{1}{\overline{F}(x)} = 0$ numérateur correspond à une multiplication par (-1), sans effet ici parce que la limite est nulle!)

c) Pour tout y de [0;1], pour x au voisinage de $+\infty$:

$$P_{[X>x]}(X>x+y) = \frac{P([X>x]\cap [X>x+y])}{P(X>x)} = \frac{P(X>x+y)}{P(X>x)} \text{ car } [X>x+y] \text{ implique } [X>x],$$
 donc:

$$P_{[X>x]}(X>x+y)-1=\frac{\overline{F}(x+y)}{\overline{F}(x)}-1=\frac{\overline{F}(x+y)-\overline{F}(x)}{\overline{F}(x)} \text{ qui tend vers 0 d'après b), ce qui prouve bien que :}$$

$$\forall y \in [0; 1], \quad \lim_{x \to +\infty} P_{[X > x]}(X > x + y) = 1.$$

d) Pour x au voisinage de $+\infty$:

$$R(x+1) - R(x) = -\ln\left(\overline{F}(x+1)\right) + \ln\left(\overline{F}(x)\right) = -\ln\left(\frac{\overline{F}(x+1)}{\overline{F}(x)}\right).$$

Comme on l'a vu en a) : pour tout y de [0;1], $\lim_{x\to+\infty} \frac{\overline{F}(x+y)}{\overline{F}(x)} = 1$, ce qui est en particulier le cas pour y=1, et ainsi :

$$\lim_{x\to +\infty} \frac{\overline{F}(x+1)}{\overline{F}(x)} = 1 \iff \lim_{x\to +\infty} -\ln\left(\frac{\overline{F}(x+1)}{\overline{F}(x)}\right) = 0 \iff \lim_{x\to +\infty} \left(R(x+1) - R(x)\right) = 0.$$

- 16. Soit F la fonction de répartition d'une variable aléatoire à queue longue.
 - a) Soit λ strictement positif fixé.
 - i. Puisque $\lambda > 0$, alors $e^{-\lambda/2}$ appartient à]0;1[, donc peut s'écrire sous la forme : $e^{-\lambda/2} = 1 \varepsilon$, où concrètement $\varepsilon = 1 e^{-\lambda/2}$ appartient lui-même à]0;1[.

Avec cette valeur de ε : la définition d'une loi à queue longue s'applique, qui garantit l'existence d'un réel ici noté x_0 , tel que :

$$\forall x \geqslant x_0, \ \forall y \in [0;1], \quad \left| \frac{\overline{F}(x+y)}{\overline{F}(x)} - 1 \right| < \varepsilon \iff 1 - \varepsilon < \frac{\overline{F}(x+y)}{\overline{F}(x)} < 1 + \varepsilon \implies e^{-\lambda/2} < \frac{\overline{F}(x+y)}{\overline{F}(x)}$$

ce qui donne bien, par multiplication par $\overline{F}(x)>0$, l'inégalité vraie pour tout $x\geqslant x_0$ et tout y de [0;1]:

$$\overline{F}(x+y) \geqslant \overline{F}(x)e^{-\lambda/2}$$

- ii. Montrons par récurrence sur n que la propriété $\mathcal{P}(n)$: " $\overline{F}(x_0+n) \geqslant \overline{F}(x_0)e^{-\lambda \frac{n}{2}}$ ", est vraie pour tout $n \in \mathbb{N}^*$.
 - I. Pour n = 1: l'inégalité de la question précédente, appliquée avec $x = x_0$ et y = 1, donne : $\overline{F}(x_0 + 1) \geqslant \overline{F}(x_0)e^{-\frac{\lambda}{2}}$, ce qui est bien la propriété $\mathcal{P}(1)$.
 - H. Supposons $\mathcal{P}(n)$ vraie pour un certaine $n \in \mathbb{N}^*$, et sous cette hypothèse, montrons que $\mathcal{P}(n+1)$ est vraie, soit : " $\overline{F}(x_0+n+1) \geqslant \overline{F}(x_0)e^{-\lambda\frac{n+1}{2}}$ ".

L'inégalité de la question précédente, appliquée avec $x=x_0+n\geqslant x_0$ et y=1, donne :

$$\overline{F}(x_0+n+1) \geqslant \overline{F}(x_0+n)e^{-\frac{\lambda}{2}}$$
.

Or (H.R.): $\overline{F}(x_0+n) \geqslant e^{-\lambda \frac{n}{2}} \Longrightarrow \overline{F}(x_0+n)e^{-\frac{\lambda}{2}} \geqslant e^{-\lambda \frac{n+1}{2}}$ (multiplication des deux membres par $e^{-\frac{\lambda}{2}} > 0$).

Ainsi par transitivité, on a bien : $\overline{F}(x_0 + n + 1) \ge e^{-\lambda \frac{n+1}{2}}$, et $\mathcal{P}(n+1)$ est vraie si $\mathcal{P}(n)$ l'est.

C. La propriété est intialisée et héréditaire : elle est donc vraie pour tout $n \in \mathbb{N}^*$, d'après le principe de récurrence.

iii. De l'inégalité précédente, on déduit (multiplication par $e^{\lambda(x_0+n)} > 0$) :

$$\forall n \in \mathbb{N}^*, \quad e^{\lambda(x_0+n)}\overline{F}(x_0+n) \geqslant e^{\lambda(x_0+\frac{n}{2})}. \text{ Puisque } \lambda > 0 \text{ et } x_0 > 0, \text{ alors } \lim_{n \to +\infty} \lambda(x_0+\frac{n}{2}) = +\infty,$$

$$\operatorname{donc} \lim_{n \to +\infty} e^{\lambda(x_0+\frac{n}{2})} = \lim_{X \to +\infty} e^X = +\infty.$$

On conclut par comparaison de limites, que :

$$\lim_{n \to +\infty} e^{\lambda(x_0 + n)} \overline{F}(x_0 + n) = +\infty$$

b) Il est clair que le résultat précédent prouve que la fonction $x \mapsto e^{\lambda x} \overline{F}(x)$ n'est pas bornée sur \mathbb{R}_+ : pour tout réel M>0, il existe un entier $N\in\mathbb{N}^*$ tel que $e^{\lambda(x_0+N)}\overline{F}(x_0+N)>M$, donc pour tout M>0, il existe un réel x (= x_0+N) tel que $e^{\lambda x}\overline{F}(x)>M$.

C Major Prépa

- c) On suppose, comme le suggère l'énoncé, que $\liminf_{n \to +\infty} \frac{R(x)}{x} > 0$; alors le résultat de 13.a) s'applique, qui assure l'existence de deux réels strictement positifs x_0 et ε tels que : $\forall x \geqslant x_0$, $\overline{F}(x) \leqslant e^{-\varepsilon x}$, qui implique : $\forall \lambda > 0, \ \forall x \geqslant x_0, \ e^{\lambda x} \overline{F}(x) \leqslant e^{(\lambda \varepsilon)x}$. Il suffit alors de prendre $\lambda < \varepsilon$ pour avoir : $\forall x \geqslant x_0, \ e^{\lambda x} \overline{F}(x) \leqslant e^{(\lambda \varepsilon)x} \leqslant 1$ puisque $(\lambda \varepsilon)x \leqslant 0$. La fonction $x \mapsto e^{\lambda x} \overline{F}(x)$ est alors bornée sur $[x_0; +\infty[$; comme elle est continue sur $[0; x_0]$, elle est aussi bornée sur ce segment, donc finalement bornée sur \mathbb{R}_+ . C'est bien sûr absurde vu ce qu'on a obtenu en b)! L'hypothèse $\liminf_{n \to +\infty} \frac{R(x)}{x} > 0$ est donc absurde, et ainsi : $\liminf_{n \to +\infty} \frac{R(x)}{x} = 0$.
- d) Les questions 13. et 14. ont établi l'équivalence :

La loi de X possède une queue lourde $\iff \liminf_{n \to +\infty} \frac{R(x)}{x} = 0$

et on vient de voir que : la loi de X possède une queue longue $\Longrightarrow \liminf_{n \to +\infty} \frac{R(x)}{x} = 0$. On a bien l'implication :

La loi de X possède une loi à queue longue \Longrightarrow la loi de X possède une loi à queue lourde

* * * FIN DU SUJET * * *

