Corrigé HEC eco III 2002 par Pierre veuillez EXERCICE I

Le but de cet exercice est la résolution de l'équation matricielle AM = MB, d'inconnue M, dans l'espace vectoriel E des matrices carrées d'ordre 2 à coefficients réels. On rappelle que si U_1 , U_2 , U_3 , U_4 sont les matrices définies par :

$$U_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 $U_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $U_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $U_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

la famille (U_1, U_2, U_3, U_4) est une base de E, qui est donc de dimension 4. Si A et B sont deux matrices de E, l'ensemble des matrices M de E vérifiant AM = MB est noté $V_{A,B}$.

- 1. Soit A et B deux matrices de E et $\varphi_{A,B}$ l'application qui, à toute matrice M de E, associe la matrice AM MB.
 - a) $\varphi_{A,B}$ est définie sur E à valeurs dans E car AM-MB sera une matrice d'ordre 2. Soient M et N de E et α et β réels alors

$$\varphi_{A,B}(\alpha M + \beta N) = A(\alpha M + \beta N) - (\alpha M + \beta N)B = \alpha(AM - MB) + \beta(AN - NB)$$
$$= \varphi_{A,B}(N) + \beta\varphi_{A,B}(N)$$

Conclusion : $\varphi_{A,B} \in \mathcal{L}(E)$

Et on a alors

Conclusion: $V_{A,B} = \ker(\varphi_{A,B})$ est un sous-espace vectoriel de E

b) On calcule les images des vecteurs de la base :

$$\varphi_{A,B}(U_{1}) = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix} \\
= \begin{pmatrix} 2 & 0 \\ -1 & 0 \end{pmatrix} = 2U_{1} - U_{3} \\
\varphi_{A,B}(U_{2}) = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix} \\
= \begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix} = -2U_{1} - U_{4} \\
\varphi_{A,B}(U_{3}) = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix} \\
= \begin{pmatrix} -1 & 0 \\ 2 & 0 \end{pmatrix} = U_{1} + 2U_{3} \\
\varphi_{A,B}(U_{4}) = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix} \\
= \begin{pmatrix} 0 & -1 \\ -2 & 0 \end{pmatrix} = -2U_{2} - 2U_{3}$$
Donc $\max_{\mathcal{B}} (\varphi_{A,B}) = \begin{pmatrix} 2 & -2 & 1 & 0 \\ 0 & 0 & 0 & -2 \\ -1 & 0 & 2 & -2 \\ 0 & -1 & 0 & 0 \end{pmatrix}$

Pour montrer que cette matrice est inversible, on montre que ses colonnes sont libres:

Si
$$\alpha C_1 + \beta C_2 + \gamma C_3 + \delta C_4 = 0$$
 alors

$$L_2: -2\delta = 0$$
 donc $\delta = 0$

$$L_4: -\beta = 0$$
, donc $\beta = 0$

 $L_1 + 2L_3 : 5\gamma = 0$ donc $\gamma = 0$ et $\alpha = 0$ en substituant dans L_1 .

Donc la famille est libre et la matrice est inversible.

Donc
$$\varphi_{A,B}$$
 est bijective et $\ker (\varphi_{A,B}) = \{0\}$.

Conclusion:
$$V_{A,B} = \{0\}$$

2. Dans cette question, r et s désignent deux réels distincts et différents de 1, et on pose :

$$D = \begin{pmatrix} 1 & 0 \\ 0 & r \end{pmatrix} \quad \text{et} \quad \Delta = \begin{pmatrix} 1 & 0 \\ 0 & s \end{pmatrix}$$

a) Soit
$$M = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$$

$$M \in V_{D,\Delta} \iff DM - M\Delta = 0$$

$$\iff \begin{pmatrix} 1 & 0 \\ 0 & r \end{pmatrix} \begin{pmatrix} x & y \\ z & t \end{pmatrix} - \begin{pmatrix} x & y \\ z & t \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & s \end{pmatrix}$$

$$\iff \begin{pmatrix} 0 & y - sy \\ rz - z & rt - st \end{pmatrix} = 0$$

Et comme
$$s-1 \neq 0$$
 et $r-1 \neq 0$ et $r-s \neq 0$
Conclusion: $M \in V_{D,\Delta} \iff y=z=t=0$

Conclusion:
$$M \in V_{D,\Delta} \iff y = z = t = 0$$

b) Donc
$$V_{D,\Delta} = \text{Vect}\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 et (U_1) est génératrice et libre (un vecteur non nul)

$$Conclusion: \cite{(U_1)}$$
 est une base de $V_{D,\Delta}$

3. Soit a, b, c, d des réels non nuls vérifiant $a - b \neq c - d, a - b \neq 1, c - d \neq 1, A$ et B les matrices définies par :

$$A = \begin{pmatrix} a & 1 - a \\ b & 1 - b \end{pmatrix} \quad , \quad B = \begin{pmatrix} c & 1 - c \\ d & 1 - d \end{pmatrix}$$

a) N.B. on demande l'existence de P et de Q et pas leur valeur. On n'a donc pas besoin de rechercher les sous-espaces propres.

$$A-I=\begin{pmatrix} a-1 & 1-a \\ b & -b \end{pmatrix}$$
 dont les colonnes sont proportionnelles donc liées.

A - I est donc non inversible et 1 est valeur propre de A.

de même pour
$$A-(a-b)\,I=\begin{pmatrix} b&1-a\\b&1-a\end{pmatrix}$$
 et $a-b$ est valeur propre de A

Comme $1 \neq a - b$ alors A possède deux valeurs propres distinctes et comme A est d'ordre 2 elle ne peux pas en avoir d'autres.

Conclusion:

$$a-b$$
 et 1 sont les deux valeurs propres distinctes de A qui est donc diagonalisable

Donc il existe
$$P$$
 telle que $\begin{pmatrix} 1 & 0 \\ 0 & r \end{pmatrix} = P^{-1}AP$ avec $r = a - b$

b) On réutilise le résultat précédent avec a=c et b=d et $c-d\neq 1$

Conclusion: c-d et 1 sont les deux valeurs propres distinctes de B qui est donc diagonalisable

Donc il existe
$$Q$$
 telle que $\begin{pmatrix} 1 & 0 \\ 0 & s \end{pmatrix} = P^{-1}AP$ avec $s = c - d$

c) On recopie l'écriture précédente avec $A = PDP^{-1}$ et B = :

$$M \in V_{A,B} \iff PDP^{-1}M - MQ\Delta Q^{-1} = 0$$

 $\iff P^{-1}PDP^{-1}MQ - P^{-1}MQ\Delta Q^{-1}Q = 0$
 $\iff DP^{-1}MQ - P^{-1}MQ\Delta = 0$
 $\iff P^{-1}MQ \in V_{D,\Delta}$

On a alors $M \in V_{A,B} \iff$ il existe $x \in \mathbb{R}$ tel que $P^{-1}MQ = x \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

Conclusion:
$$V_{A,B} = \text{Vect}\left\{P\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}Q^{-1}\right\}$$
 dont une base est $\left(P\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}Q^{-1}\right)$

4. Dans cette question r, s et u, v désignent quatre réels vérifiant $r \neq s$, $r \neq v$, $u \neq s$, $u \neq v$, et on pose:

$$D = \begin{pmatrix} u & 0 \\ 0 & r \end{pmatrix} \quad \text{et} \quad \Delta = \begin{pmatrix} v & 0 \\ 0 & s \end{pmatrix}$$

a) Avec
$$M = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$$
,

$$M \in V_{D,\Delta} \iff DM - M\Delta = 0$$

$$\iff \begin{pmatrix} u & 0 \\ 0 & r \end{pmatrix} \begin{pmatrix} x & y \\ z & t \end{pmatrix} - \begin{pmatrix} x & y \\ z & t \end{pmatrix} \begin{pmatrix} v & 0 \\ 0 & s \end{pmatrix} = 0$$

$$\iff \begin{pmatrix} (u - v) x & (u - s) y \\ (r - v) z & (r - s) t \end{pmatrix} = 0$$

et comme $u-v,\ u-s,\ r-v$ et r-s sont non nuls, on a M=0. Conclusion : $V_{D,\Delta}=\{0\}$

b) Donc si A et B sont diagonalisable sans valeurs propres commune, il existe des matrices P et Q inversibles et D et Δ diagonales telles que $A = PDP^{-1}$ et $B = Q\Delta Q^{-1}$. Avec u et r les valeurs diagonales de D et v et s celles de Δ .

Comme elles n'ont pas de valeurs propres communes, $r \neq s, r \neq v, u \neq s, u \neq v$.

Et comme précédemment

$$M \in V_{A,B} \iff P^{-1}MQ \in V_{D,\Delta}$$

qui a pour unique solution $P^{-1}MQ = 0$ donc M = 0.

Conclusion: $V_{A,B} = \{0\}$ si A et B sont diagonalisables sans valeurs propres communes

EXERCICE II

Cet exercice met en évidence le fait que l'existence d'une espérance finie, pour une variable aléatoire, n'est pas toujours intuitive. Dans tout l'exercice, I désigne l'intervalle réel $[1, +\infty]$ et on suppose que toutes les variables aléatoires envisagées sont définies sur le même espace probabilisé $(\Omega, \mathcal{A}, \mathbf{P})$. Première approche

Montrer que l'application g définie par : $\begin{cases} g(t) = \frac{1}{t^2} & \text{si } t \in I \\ g(t) = 0 & \text{sinon} \end{cases}$ est une densité de probabilité.

1. g est continue sur $\mathbb{R}\setminus\{1\}$ et positive sur \mathbb{R}

 $\int_{-\infty}^{+\infty} g$ est impropre en $\pm \infty$.

$$\int_{-\infty}^{1} g = \int_{-\infty}^{1} 0 = 0$$

 $\int_{-\infty}^{1} g = \int_{-\infty}^{1} 0 = 0$ $\int_{1}^{+\infty} g = \int_{1}^{+\infty} \frac{dt}{t^{2}} \text{ (Riemann donc converge, mais il faut sa valeur)}$

$$\int_{1}^{M} \frac{dt}{t^{2}} = \left[\frac{-1}{t} \right]_{1}^{M} = 1 - \frac{1}{M} \to 1 \text{ donc } \int_{1}^{+\infty} g = 1 \text{ et } \int_{-\infty}^{+\infty} g = 1$$

Conclusion : g est une densité de probabilité

2. La fonction de répartition est : $F(x) = P(X \le x) = \int_{-\infty}^{x} g(t) dt$ donc

$$- \sin x \le 1 : P(X \le x) = \int_{-\infty}^{x} 0 dt = 0$$

- si
$$x \le 1$$
: $P(X \le x) = \int_{-\infty}^{x} 0 dt = 0$
- si $x > 1$: $P(X \le x) = \int_{-\infty}^{1} 0 dt + \int_{1}^{x} \frac{1}{t^{2}} dt = 1 - \frac{1}{x}$

Pour l'espérance, on étudie la convergence de $\int_{-\infty}^{+\infty} tg\left(t\right)dt$ impropre en $\pm\infty$

Or pour tout $t\geqslant 1$: $tg\left(t\right)=\frac{1}{t}$ dont l'intégrale diverge en $+\infty$ (Riemann) et $\int_{-\infty}^{+\infty}tg\left(t\right)dt$ diverge

Conclusion: X n'a pas d'espérance

- 3. Soit X et Y deux variables aléatoires à valeurs dans I admettant g pour densité et telles que, pour tout réel t, les événements $[X \leq t]$ et $[Y \leq t]$ sont indépendants. On définit alors deux variables aléatoires U et V par : $U = \min(X, Y)$ et $V = \max(X, Y)$, c'est-à-dire que, pour tout ω de Ω , $U(\omega)$ est le plus petit des nombres $X(\omega)$ et $Y(\omega)$, tandis que $V(\omega)$ est le plus grand de ces nombres.
 - a) Pour tout réel t, $[V \leqslant t] = [X \leqslant t] \cap [Y \leqslant t]$ donc (indépendance) P $[V \leqslant t] = P[X \leqslant t] P[Y \leqslant t]$

La fonction de répartition de V est donc $H:H(t)=F(t)^2=\begin{cases} 0 & \text{si } t<1\\ (1-\frac{1}{2})^2 & \text{si } t\geq 1 \end{cases}$

b) Comme F est continue sur \mathbb{R} et C^1 sur $\mathbb{R}\setminus\{1\}$, il en est de même pour H.

Donc V est à densité est une densité de V est h = H' (valeur en 1 arbitraire)

Conclusion :
$$V$$
 a pour densité l'application $\begin{cases} h(t) = \frac{2(t-1)}{t^3} & \text{si } t \in I \\ h(t) = 0 & \text{sinon} \end{cases}$

c) On a $[U > t] = [X > t] \cap [Y > t]$ indépendantes et $M(t) = P[U \le t] = 1 - (1 - F(t))^2 = \begin{cases} 0 & \text{si } t < 1 \\ 1 - \frac{1}{t^4} & \text{si } t \ge 1 \end{cases}$

M est continue sur $\mathbb R$ et C^1 sur $\mathbb R\setminus\{1\}$ et U est à densité et une densité est m=M'

Conclusion : une densité de
$$U$$
 est m :
$$\begin{cases} m(t) = \frac{2}{t^3} & \text{si } t \in I \\ m(t) = 0 & \text{sinon} \end{cases}$$

d) En $+\infty: t\ h\left(t\right) = \frac{2(t-1)}{t^2} \sim \frac{2}{t}$ dont l'intégrale diverge.

Donc par comparaison de fonctions positives, l'intégrale $\int_{1}^{+\infty}t\ h\left(t\right)dt$ diverge également.

Conclusion : V n'a pas d'espérance.

$$\int_{1}^{N} t \ m(t) dt = \int_{1}^{N} \frac{2}{t^{2}} dt = \left[-\frac{2}{t} \right]_{1}^{N} = 2 - \frac{1}{N} \to 2 \text{ quand } N \to +\infty$$

Donc $\int_{1}^{+\infty}$ converge, $\int_{-\infty}^{+\infty} t \ m(t) dt$ converge et vaut 2 Conclusion : U a une espérance qui vaut 2

Situation plus générale

Dans cette partie, n désigne un entier supérieur ou égal à 2 et on suppose que n visiteurs, numérotés de 1 à n, se rendent aléatoirement dans un musée et que, pour tout entier de l'intervalle [1, n], l'heure d'arrivée du visiteur numéro k est une variable aléatoire X_k admettant pour densité l'application g définie dans la partie .

On suppose de plus que, pour tout réel t, les événements $[X_1 \leqslant t], [X_2 \leqslant t], \ldots, [X_n \leqslant t]$ sont mutuellement indépendants.

Si r est un entier de l'intervalle [1, n], on note T_r la variable aléatoire désignant l'heure d'arrivée du r-ième arrivant.

La partie traite donc du cas n = 2, les variables aléatoires U et V étant respectivement égales à T_1 et T_2 .

- 1. Soit t un élément de I fixé. Pour tout entier k de [1, n], on note B_k la variable aléatoire prenant la valeur 1 lorsque l'événement $[X_k \leq t]$ est réalisé et la valeur 0 sinon.
 - a) $Z = B_1 + \ldots + B_n$ et B_i compte le nombre de visiteur parmi un (le i) qui arrive au plus tard à t.

Donc Z est le **nombre** total de visiteur arrivant au plus tard à t parmi n visiteurs **indépendants** qui ont tous la probabilité F(t) d'arriver.

Et donc
$$Z \hookrightarrow \mathcal{B}\left(n, 1 - \frac{1}{t}\right)$$

b) $[T_r \leqslant t]$ signifie que le $r^{i\acute{e}me}$ visiteur est arrivé au plus tard à t c'est à dire qu'à t, il y avait au moins r visiteurs arrivés.

Donc
$$[T_r \leqslant t] = [Z \geqslant r]$$
 et donc

$$P(T_r \leqslant t) = P(Z \geqslant r)$$

$$= \sum_{k=r}^{n} P(Z = k)$$

$$= \sum_{k=r}^{n} \binom{n}{k} \left(1 - \frac{1}{t}\right)^k \left(\frac{1}{t}\right)^{n-k}$$

c) Pour tout $k \in [[1, n]]$ on a

$$k \binom{n}{k} = k \frac{n!}{k! (n-k)} = \frac{n!}{(k-1)! (n-k)} \operatorname{car} k - 1 \ge 0$$
$$(n+1-k) \binom{n}{k-1} = (n+1-k) \frac{n!}{(k-1)! (n-k+1)!}$$
$$= \frac{n!}{(k-1)! (n-k)!} \operatorname{car} n - k \ge 0$$

Conclusion: $k\binom{n}{k} - (n+1-k)\binom{n}{k-1} = 0 \text{ si } k \in [[1,n]]$

d) La fonction de répartition de T_r est donnée par $G(t) = \begin{cases} 0 & \text{si } t < 1 \\ \sum_{k=r}^{n} {n \choose k} \left(1 - \frac{1}{t}\right)^k \left(\frac{1}{t}\right)^{n-k} & \text{si } t \ge 1 \end{cases}$ G est continue sur $]-\infty, 1[$ et sur $[1, +\infty[$ et en $1^-:$ $G(t) = 0 \to 0$ et $G(1) = \sum_{k=r}^{n} {n \choose k} 0^k = 0$ car $r \ge 1$ $(r^{i\grave{e}me} \text{ visiteur})$

et G est C^1 sur $\mathbb{R}\setminus\{1\}$ donc T_r est à densité et une densité de Z est G' : G'(t)=0 si $t\notin I$ et

$$G'(t) = \sum_{k=r}^{n} \binom{n}{k} k \left(1 - \frac{1}{t}\right)^{k-1} \frac{1}{t^2} \left(\frac{1}{t}\right)^{n-k} - \binom{n}{k} \left(1 - \frac{1}{t}\right)^k (n-k) \left(\frac{1}{t}\right)^{n-k-1} \frac{1}{t^2}$$

Méthode : on réindexe la seconde somme par k = h - 1 soit h = k + 1 pour faire apparaître les coef du binôme du a)

(et pas factoriser et simplifier directement)

$$G'(t) = \sum_{k=r}^{n} \binom{n}{k} k \left(1 - \frac{1}{t}\right)^{k-1} \left(\frac{1}{t}\right)^{n-k+2} - \sum_{h=r+1}^{n+1} \binom{n}{k-1} \left(1 - \frac{1}{t}\right)^{h-1} (n-h+1) \left(\frac{1}{t}\right)^{n-h+2}$$

$$= \binom{n}{r} r \left(1 - \frac{1}{t}\right)^{r-1} \left(\frac{1}{t}\right)^{n-r+2} - 0$$

$$+ \sum_{k=r}^{n} \left(1 - \frac{1}{t}\right)^{k-1} \left(\frac{1}{t}\right)^{n-k+2} \left[\binom{n}{k} k - (n-k+1) \binom{n}{k-1}\right]$$

$$= \binom{n}{r} r \left(1 - \frac{1}{t}\right)^{r-1} \left(\frac{1}{t}\right)^{n-r+2} + \sum_{h=r+1}^{n} 0 \operatorname{car} k \in [[1, n]]$$

Conclusion: $T_r \text{ admet pour densit\'e } \begin{cases} f_r(t) = r \binom{n}{r} \left(\frac{1}{t}\right)^{n+2-r} \left(1 - \frac{1}{t}\right)^{r-1} & \text{si } t \in I \\ f_r(t) = 0 & \text{sinon} \end{cases}$

e) Comme $\left(1-\frac{1}{t}\right)^{r-1} \to 1$ alors $tf_r(t) \sim r\binom{n}{r} \left(\frac{1}{t}\right)^{n+1-r}$

Or l'intégrale $\int_1^{+\infty} \left(\frac{1}{t}\right)^{n+1-r} dt$ (Riemann) converge si et seulement si $n+1-r>1 \Longleftrightarrow r < n$

Et par comparaison d'intégrales de fonctions positives, $\int_{1}^{+\infty} f f(t) dt$ converge si et seulement si r < n.

 T_r a donc une espérance pour r < n et pas pour r = n.

 $Conclusion: T_1, T_2, \ldots, T_{n-1}$ admettent une espérance alors que T_n n'en admet pas.

- 2. Pour tout couple (p,q) d'entiers naturels, on pose : $J(p,q) = \int_0^1 x^p (1-x)^q dx$.
 - a) On a $J(p, q + 1) = \int_0^1 x^p (1 x)^{q+1} dx$ et $J(p + 1, q) = \int_0^1 x^{p+1} (1 x)^q dx$ Soit $u'(t) = x^p : u(t) = \frac{1}{p+1} x^{p+1} : v(t) = (1 - x)^{q+1} : v'(t) = -(q+1) (1 - x)^q$ avec u et v de classe C^1 sur [0, 1] (puissances positives) Donc

$$J(p,q+1) = \left[\frac{1}{p+1}x^{p+1}(1-x)^{q+1}\right]_0^1 - \int_0^1 \frac{-1}{p+1}x^{p+1}(q+1)(1-x)^q dx$$
$$= \frac{q+1}{p+1}\int_0^1 x^{p+1}(1-x)^q dx$$

Conclusion: pour tout $(p,q) \in \mathbb{N}^2$: (p+1) J(p,q+1) = (q+1) J(p+1,q)

b) On a

$$J(0,q) = \int_0^1 (1-x)^q dx$$
$$= \left[\frac{-1}{q+1} (1-x)^{q+1} \right]_0^1$$
$$= \frac{1}{q+1}$$

Conclusion: $J(0,q) = \frac{1}{q+1}$ pour tout entier q

c) Par récurrence :

- Pour p = 0, on a pour tout q entier $J(0, q) = \frac{1}{q+1} = \frac{0! \, q!}{(1+q)!}$

– Soit $p \geqslant 0$ tel que pour tout $q \in \mathbb{N} : J(p,q) = \frac{p! \, q!}{(1+p+q)!}$ alors

$$J(p+1,q) = \frac{p+1}{q+1}J(p,q+1)$$

$$= \frac{p!(q+1)!}{(1+p+q+1)!}\frac{p+1}{q+1}$$

$$= \frac{(p+1)! \, q!}{(1+p+1+q)!}$$

- Donc pour tout entier p et pour tout entier q la propriété est vraie.

Conclusion: pour tout $(p,q) \in \mathbb{N}^2$: $J(p,q) = \frac{p! \, q!}{(1+p+q)!}$

3. Soit r un entier de l'intervalle [1, n-1].

a) Si a est un réel strictement supérieur à 1, avec $t=\frac{1}{x}:dt=\frac{-1}{x^2}dx:t=1\Longleftrightarrow x=1:t=a\Longleftrightarrow x=\frac{1}{a}$ et $x\to\frac{1}{x}$ de classe C^1 sur $\left[1,\frac{1}{a}\right]$ et $t\to tf_r(t)$ continue sur l'intervalle image de $\left[1,\frac{1}{a}\right]$ par $x\to\frac{1}{x}:\left[1,a\right]$.

$$\int_{1}^{a} t f_{r}(t) dt = \int_{1}^{1/a} \frac{1}{x} f_{r}\left(\frac{1}{x}\right) \frac{-1}{x^{2}} dx$$

$$= \int_{1/a}^{1} \frac{1}{x^{3}} \left[r\binom{n}{r} x^{n+2-r} (1-x)^{r-1}\right] dx \operatorname{car} \frac{1}{x} \geqslant 1$$

$$= \int_{1/a}^{1} r\binom{n}{r} x^{n-1-r} (1-x)^{r-1} dx$$

$$= r\binom{n}{r} \int_{1/a}^{1} x^{n-1-r} (1-x)^{r-1} dx$$

b) et quand $a \to +\infty$: $\int_1^a t \, f_r(t) \, dt \to E(T_r)$ et comme $\frac{1}{a} \to 0$ alors $\int_{1/a}^1 x^{n-1-r} \, (1-x)^{r-1} dx \to J(n-1-r,r-1) \text{ car } n-1-r \ge 0 \text{ et } r-1 \ge 0 \text{ (} r \in [[1,n-1]] \text{)}$

Finalement

$$E(T_r) = r \binom{n}{r} \frac{(n-r-1)!(r-1)!}{(1+n-r-1+r-1)!}$$
$$= r \frac{n!}{r!(n-r)!} \frac{(n-r-1)!(r-1)!}{(n-1)!}$$
$$= \frac{n}{n-r}$$

Conclusion:
$$E(T_r) = \frac{n}{n-r} \text{ pour } r \in [[1, n-1]]$$

et on retrouve le problème pour n=r dans cette formule.

Mise en perspective:

On a $\sum_{r=1}^{n} T_r = \sum_{k=1}^{n} X_k$ avec les X_k qui ont chacun une espérance infinie.

Le temps d'attente infini se "concentre" sur le dernier arrivé!