CHAMBRE DE COMMERCE ET D'INDUSTRIE DE PARIS Direction de l'Enseignement

DIRECTION DES ADMISSIONS ET CONCOURS

ECOLE DES HAUTES ETUDES COMMERCIALES

OPTION SCIENTIFIQUE

MATHEMATIQUES I

Mercredi 7 Mai 2003, de 8 h. à 12 h.

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs.

Ils ne doivent faire usage d'aucun document : l'utilisation de toute calculatrice et de tout matériel électronique est interdite.

Seule l'utilisation d'une règle graduée est autorisée.

NUAGES DE POINTS ET APPROXIMATION D'UN NUAGE

Dans tout le problème n et p désignent des entiers naturels supérieurs ou égaux à 2 et on pose $E_p = \mathbb{M}_{p,1}(\mathbb{R})$. L'espace E_p est muni de sa structure euclidienne canonique; la norme euclidienne d'un vecteur x de E_p est notée ||x||; le produit scalaire de deux vecteurs x et y de E_p est noté $\langle x,y\rangle$.

Si u est un vecteur non nul appartenant à E_p , D_u désigne la droite vectorielle engendrée par u et si x est un vecteur de E_p , $P_{D_u}(x)$ est le projeté orthogonal de x sur la droite D_u .

Si F est un sous-espace vectoriel de E_p , le supplémentaire orthogonal de F dans E_p est noté F^{\perp} .

Pour toute matrice A appartenant à $\mathbb{M}_{m,\ell}(\mathbb{R})$ on note Φ_A l'application linéaire de $\mathbb{M}_{\ell,1}(\mathbb{R})$ dans $\mathbb{M}_{m,1}(\mathbb{R})$ définie par : $\forall X \in \mathbb{M}_{\ell,1}(\mathbb{R}), \ \Phi_A(X) = AX$.

Pour tout r appartenant à \mathbb{N}^* et toute famille $(u_i)_{1 \leq i \leq r}$ de vecteurs de E_p , $\operatorname{Vect}(u_1, \ldots, u_r)$ est le sous-espace vectoriel de E_p engendré par les vecteurs u_1, \ldots, u_r .

Si g est une fonction définie sur un sous-espace vectoriel F de E_p et à valeurs dans \mathbb{R} , on désigne par $\max_{\substack{x \in F \\ \|x\|=1}} g(x)$

ou $\operatorname{Max} \{g(x); x \in F \text{ et } ||x|| = 1\}$ le maximum, lorsqu'il existe, de la fonction g sur l'ensemble des vecteurs x de F dont la norme est égale à 1.

Partie I. Étude d'un exemple

Dans cette partie et uniquement dans celle-ci, on suppose que p = 2. On note (u_1, u_2) la base canonique de E_2 .

- 1) On considère les vecteurs v_1 , v_2 et v_3 appartenant à E_2 et dont les coordonnées dans la base (u_1, u_2) sont respectivement (1, 2), (-3, -1), (2, -1).
 - On considère un réel m et on note, pour tout i appartenant à $\{1,2,3\}$, v'_i le projeté orthogonal de v_i sur la droite vectorielle engendrée par $u_1 + mu_2$.
 - a) Calculer en fonction de m la quantité: $||v_1'||^2 + ||v_2'||^2 + ||v_3'||^2$.
 - b) Déterminer la valeur m_0 de m pour laquelle cette quantité atteint son maximum; ce maximum est noté λ_1 .
- 2) Soit X la matrice $\begin{pmatrix} 1 & -3 & 2 \\ 2 & -1 & -1 \end{pmatrix}$.
 - a) Vérifier que λ_1 est une valeur propre de Φ_{X^tX} ; $u_1 + m_0u_2$ étant un vecteur propre associé à λ_1 .
 - b) Déterminer l'autre valeur propre de $\Phi_{X t_X}$ et la comparer à λ_1 .

Partie II. Les axes principaux d'inertie d'un nuage

Les notations introduites dans cette partie seront utilisées dans toute la suite du problème.

On définit la matrice $X=(x_{ij})_{\substack{1\leq i\leq p\\1\leq j\leq n}}$ appartenant à $\mathbb{M}_{p,n}(\mathbb{R})$ appelée nuage; ses colonnes c_1,\ldots,c_n sont appelées points du nuage; X est donc un nuage de n points dans un espace de dimension p.

On définit la matrice $V = X^{t}X$.

On appelle F le sous-espace vectoriel de E_p engendré par les vecteurs colonnes c_1, \ldots, c_n et on suppose que $\dim F = r$ et $p > r \geqslant 1$.

Pour tout vecteur v non nul de E_p , on pose $I(v) = \sum_{j=1}^n \|P_{D_v}(c_j)\|^2$; cette quantité s'appelle l'inertie du nuage X sur la droite D_v .

Pour tout couple de vecteurs (v, w) appartenant à E_p^2 , on pose : $J(v, w) = \sum_{j=1}^n \langle v, c_j \rangle \langle w, c_j \rangle$.

- 1) a) Montrer que la matrice V est diagonalisable et que ses valeurs propres sont des réels positifs ou nuls. On note $\lambda_1, \ldots, \lambda_p$ les valeurs propres de V et on suppose que $\lambda_1 \geqslant \ldots \geqslant \lambda_p$.

 Justifier l'existence d'une base orthonormale (e_1, \ldots, e_p) de E_p telle que : $\forall i \in \{1, \ldots, p\}, \ Ve_i = \lambda_i e_i$.
 - b) Montrer que le noyau de Φ_V est égal à celui de Φ_{tX} .
 - \bullet En déduire que le rang de V est égal à r.
 - Montrer que : $\lambda_{r+1} = \ldots = \lambda_p = 0$.
 - Que peut-on dire de $\lambda_1, \ldots, \lambda_r$?
 - Montrer que (e_1, \ldots, e_r) est une base de F.
- 2) a) Montrer, pour tout vecteur v de norme 1 appartenant à E_p , l'égalité : $I(v) = {}^t v \ V v$.
 - b) Déterminer, pour tout i appartenant à $\{1,\ldots,p\},\ I(e_i)$ à l'aide des nombres $\lambda_1,\ldots,\lambda_p$.
 - c) On définit les sous-espaces vectoriels F_1, \ldots, F_r de E_p par :

$$F_1 = F$$
, $F_2 = F_1 \cap (D_{e_1}^{\perp})$, ..., $F_r = F_{r-1} \cap (D_{e_{r-1}}^{\perp})$

- Montrer que : $\forall i \in \{1, ..., r\}, F_i = \text{Vect}(e_i, ..., e_r).$
- Montrer que : $I(e_1) = \text{Max} \{I(v); v \in E_p \text{ et } ||v|| = 1\} = \text{Max} \{I(v); v \in F_1 \text{ et } ||v|| = 1\}.$
- Montrer que: $\forall i \in \{1, ..., r\}, \ I(e_i) = \text{Max}\{I(v); \ v \in F_i \text{ et } ||v|| = 1\}.$
- 3) Soit w un vecteur unitaire de E_p tel que $I(w) = \text{Max}\{I(v); v \in E_p \text{ et } ||v|| = 1\}$. Montrer que w appartient à F.
- 4) On suppose dans cette question que $\varepsilon_1, \ldots, \varepsilon_r$ sont r vecteurs de norme 1 appartenant à E_p et que G_1, \ldots, G_r sont r sous-espaces vectoriels de E_p tels que:

$$(\mathcal{G}) \begin{cases} G_{1}^{\circ} = F \\ \varepsilon_{1} \in G_{1} \text{ et } I(\varepsilon_{1}) = \operatorname{Max} \left\{ I(v); \ v \in G_{1} \text{ et } ||v|| = 1 \right\} \\ \varepsilon_{2} \in G_{2} = G_{1} \cap (D_{\varepsilon_{1}}^{\perp}), \text{ et } I(\varepsilon_{2}) = \operatorname{Max} \left\{ I(v); \ v \in G_{2} \text{ et } ||v|| = 1 \right\} \\ \vdots \\ \varepsilon_{r-1} \in G_{r-1} = G_{r-2} \cap (D_{\varepsilon_{r-2}}^{\perp}), \text{ et } I(\varepsilon_{r-1}) = \operatorname{Max} \left\{ I(v); \ v \in G_{r-1} \text{ et } ||v|| = 1 \right\} \\ \varepsilon_{r} \in G_{r} = G_{r-1} \cap (D_{\varepsilon_{r-1}}^{\perp}), \text{ et } I(\varepsilon_{r}) = \operatorname{Max} \left\{ I(v); \ v \in G_{r} \text{ et } ||v|| = 1 \right\} \end{cases}$$

Les droites vectorielles $D_{\varepsilon_1}, \ldots, D_{\varepsilon_r}$ sont appelées axes principaux d'inertie du nuage.

- a) Vérifier que $(\varepsilon_1, \ldots, \varepsilon_r)$ est une base orthonormale de F et que $(\varepsilon_1, \ldots, \varepsilon_r, e_{r+1}, \ldots e_p)$ est une base orthonormale de E_p .
- **b)** Montrer que pour tout couple de vecteurs (v, w) appartenant à E_p^2 , $J(v, w) = {}^t v \ V w = \langle v, \Phi_V(w) \rangle$.
- c) On se donne deux vecteurs v_1 et v_2 , unitaires, orthogonaux et appartenant à F. Pour tout réel t, on pose $\varphi(t) = I(\cos t \ v_1 + \sin t \ v_2)$.
 - Exprimer $\varphi(t)$ à l'aide de $I(v_1)$, $I(v_2)$, $J(v_1, v_2)$ et t.
 - Montrer que φ est majorée sur $\mathbb R$ et qu'elle admet un maximum.
 - On suppose que le maximum de φ est atteint en 0. Montrer que $J(v_1, v_2) = 0$.
- d) Montrer que pour tout (i,j) appartenant à $\{1,\ldots,r\}^2$, $J(\varepsilon_i,\varepsilon_j)=0$ dès que $i\neq j$.
 - Déterminer la forme de la matrice de Φ_V dans la base $(\varepsilon_1, \dots, \varepsilon_r, e_{r+1}, \dots, e_p)$.
 - En déduire que pour tout $i \in \{1, ..., r\}$, ε_i est un vecteur propre de V associé à λ_i .
- 5) Dans le langage des statisticiens les colonnes c_j de X représentent des individus d'une population statistique où p variables statistiques $x_i, (1 \le i \le p)$ ont respectivement pris les valeurs $x_{i,1}, x_{i,2}, \dots, x_{i,n}$, $(1 \le i \le p)$,

valeurs fixées de telle sorte que leur moyennes sont nulles, c'est à dire : $\sum_{j=1}^{n} x_{ij} = 0$, $1 \le i \le p$.

Calculer la covariance $cov(x_k, x_\ell)$ des variables x_k et x_ℓ lorsque k et ℓ appartiennent à $\{1, \ldots, p\}$ puis comparer la matrice V et la matrice $(cov(x_k, x_\ell))_{\substack{1 \le k \le p \\ 1 \le \ell \le n}}$.

Partie III. Une décomposition de la matrice X

Pour tout $i \in \{1, ..., p\}$ on note Π_i la matrice dans la base canonique de E_p , de la projection orthogonale de E_p sur D_{e_i} ; les vecteurs $e_1, ..., e_p$ ont été définis au II 1 a.

- 1) Montrer que: $\sum_{i=1}^{p} \Pi_{i} = I_{p}$, (où I_{p} est la matrice appartenant à $M_{p}(\mathbb{R})$ dont tous les éléments sont nuls excepté les éléments diagonaux qui valent 1).
- 2) Déterminer $\Pi_i \Pi_j$ pour tout $(i,j) \in \{1,\ldots,p\}^2$ tel que $i \neq j$.
- 3) Calculer pour tout $i \in \{r+1,\ldots,p\}$, $\Pi_i X$ et en déduire que : $X = \sum_{i=1}^r \Pi_i X$.
- 4) Pour tout $s \in \{1, \ldots, r\}$, on pose $X_s = \sum_{i=1}^s \prod_i X$.
 - a) Montrer que: Im $\Phi_{X_s} \subset \text{Vect}(e_1, \dots, e_s)$.
 - b) Calculer X_s ${}^t X e_i$ pour tout $j \in \{1, \dots, p\}$ et déterminer le rang de X_s .

Partie IV. Une norme euclidienne de matrices carrées

Pour tout entier naturel q non nul et toute matrice carrée $A=(a_{ij})_{\substack{1\leqslant i\leqslant q\\1\leqslant j\leqslant q}}$ appartenant à $\mathbb{M}_q(\mathbb{R})$, on pose

$$Tr(A) = \sum_{i=1}^{q} a_{ii}.$$

On sait que Tr définit une application linéaire de $\mathbb{M}_q(\mathbb{R})$ dans \mathbb{R} et que si A et B appartiennent respectivement à $\mathbb{M}_{n,p}(\mathbb{R})$ et $\mathbb{M}_{p,n}(\mathbb{R})$ alors $\mathrm{Tr}(AB)=\mathrm{Tr}(BA)$. On sait également que si deux matrices A et B sont semblables alors $\mathrm{Tr}(A)=\mathrm{Tr}(B)$.

Pour tout M et N appartenant à $\mathbb{M}_{p,n}(\mathbb{R})$ on pose : $\Theta(M,N) = \text{Tr}(M^t N)$.

1) Montrer que $(M,N) \longmapsto \Theta(M,N)$ est un produit scalaire sur $\mathbb{M}_{p,n}(\mathbb{R})$.

Pour toute matrice M appartenant à $\mathbb{M}_{p,n}(\mathbb{R})$, on note $|||M||| = \sqrt{\text{Tr}(M^t M)}$, appelé ici norme euclidienne de M.

- 2) Calculer pour tout $(i,j) \in \{1,\ldots,p\}^2$, $\Theta(\Pi_i X,\Pi_j X)$. On distinguera les cas i=j et $i\neq j$, et on exprimera les résultats en fonction des nombres $\lambda_1,\ldots,\lambda_p$.
- 3) Calculer $|||X X_s|||^2$, en fonction de $\lambda_1, \ldots, \lambda_r$, pour tout s appartenant à $\{1, \ldots, r\}$.

Partie V. La meilleure approximation du nuage

On rappelle que si H_1 et H_2 sont deux sous-espaces vectoriels de E_p , alors:

$$\dim(H_1+H_2)=\dim H_1+\dim H_2-\dim \left(H_1\cap H_2\right)$$

On considère un entier naturel s appartenant à $\{1, \ldots, r-1\}$ et une matrice N appartenant à $\mathbb{M}_{p,n}(\mathbb{R})$ telle que rang $(N) \leq s$.

- 1) Justifier rapidement l'existence d'une base orthonormale (a_1, \ldots, a_p) de E_p formée de vecteurs propres de $(X-N)^t(X-N)$. On note $\gamma_1, \ldots, \gamma_p$ les valeurs propres de $(X-N)^t(X-N)$ associées respectivement aux vecteurs a_1, \ldots, a_p et on suppose que $\gamma_1 \ge \ldots \ge \gamma_p$.
- 2) Soit i un entier appartenant à $\{1, \ldots, r-s\}$ et un sous-espace G de E_p de dimension supérieure ou égale à i.
 - a) Montrer que : $\dim (G \cap \operatorname{Vect}(a_i, \ldots, a_p)) \ge 1$.
 - b) En déduire qu'il existe un vecteur unitaire u appartenant à G tel que $\| t(X-N)u \|^2 \leqslant \gamma_i$.
 - c) On considère l'espace vectoriel $H = (\operatorname{Ker} \Phi_{iN}) \cap \operatorname{Vect}(e_1, \dots, e_{s+i})$.
 - Montrer que : dim $H \geqslant i$.
 - En déduire : $\lambda_{s+i} \leq \gamma_i$.
- 3) a) Montrer que: $|||X N|||^2 = \sum_{i=1}^p \gamma_i$.

- b) En déduire que : $|||X N|||^2 \geqslant \sum_{i=s+1}^r \lambda_i$.
- c) En déduire que X_s réalise la meilleure approximation de X par des matrices de rang inférieur ou égal à s au sens de la norme euclidienne définie plus haut sur $\mathbb{M}_{p,n}(\mathbb{R})$.
- 4) Soit G un sous-espace vectoriel de E_p .

On note P_G la projection orthogonale de E_p sur G, Π_G sa matrice dans la base canonique de E_p et $K(G) = \sum_{i=1}^{n} \|P_G(c_j)\|^2$.

La quantité K(G) s'appelle l'inertie du nuage X sur le sous-espace G, et dans le cas où $G = E_p$, K(G) est l'inertie totale du nuage X.

- a) Montrer que : $K(G) = |||\Pi_G X|||^2$.
- b) Montrer que: $K(G) = |||X|||^2 |||X \Pi_G X|||^2$.
- c) On suppose toujours que s est un entier appartenant à $\{1,\ldots,r-1\}$ et $\dim G\leqslant s$.
 - Montrer que: $K(G) \leq \sum_{i=1}^{s} \lambda_i$.
 - Montrer que $K(\text{Vect}(e_1, \ldots, e_s))$ est le maximum des nombres K(G), lorsque G parcourt l'ensemble des sous-espaces vectoriels de E_p dont la dimension est inférieure ou égale à s.
- d) On suppose dans cette question que s appartient à $\{1, \ldots, p\}$, on ne suppose donc plus que $s \leqslant r-1$. Montrer que $K(\text{Vect}(e_1, \ldots, e_s))$ est le maximum des nombres K(G), lorsque G parcourt l'ensemble des sous-espaces vectoriels de E_p dont la dimension est inférieure ou égale à s.

Partie VI. Non multa, sed multum

Dans cette partie, on propose une interprétation pratique des résultats théoriques précédents à propos d'une enquête de consommations.

On a étudié les « consommations » annuelles de 8 denrées alimentaires (ce sont les 8 variables statistiques x_i , $(1 \le i \le 8)$ que l'on suppose centrées), par différentes catégories socio-professionnelles, à savoir : celles des exploitants agricoles (AGRI) représentées par la colonne c_1 , des salariés agricoles (SAAG $(=c_2)$), des professions indépendantes (PRIN $(=c_3)$), les cadres supérieurs (CSUP $(=c_4)$), des cadres moyens (CMOY $(=c_5)$), des employés (EMP $(=c_6)$), des ouvriers (OUV $(=c_7)$), des inactifs (INAC $(=c_8)$). Dans notre exemple un individu est donc une catégorie socio-professionnelle.

On a consigné les résultats de l'enquête dans une matrice $X=(x_{ij})_{\substack{1\leq i\leq 8\\1\leq j\leq 8}}$. Par exemple x_{12} représente la consommation moyenne de la denrée 1 par la catégorie SAAG.

Les valeurs propres de la matrice $V=X^tX$ sont approximativement 70, 20, 5, 3, 2, 0, 0 et 0 associées respectivement à $e_1, \ldots e_8$.

1) Quelle part de l'inertie totale est contenue dans l'inertie du nuage de points sur le sous-espace de base (e_1, e_2) ?

On a représenté dans le dessin ci-contre les projetés orthogonaux dans le plan de base (e_1, e_2) des 8 individus $(c_j)_{1 \le j \le 8}$, c'est-à-dire des 8 colonnes représentant les consommations moyennes de chaque catégorie socio-professionnelle.

2) Que représente le nuage de points du dessin pour le nuage X de l'enquête?



