CODE EPREUVE :

Concepteur: EM LYON

295 EML_MATS

1ère épreuve (option scientifique)

MATHÉMATIQUES

Lundi 9 mai 2005 de 8 heures à 12 heures

Les candidats ne doivent faire usage d'aucun document ; l'utilisation de toute calculatrice et de tout matériel électronique est interdite. Seule l'utilisation d'une règle graduée est autorisée.

Premier problème

On considère la suite $(T_n)_{n\in\mathbb{N}}$ de polynômes de $\mathbb{R}[X]$ définie par :

 $T_0 = 1$, $T_1 = 2X$ et, pour tout entier $n \ge 2$, $T_n = 2XT_{n-1} - T_{n-2}$.

On pourra confondre polynôme et fonction polynomiale. Ainsi, pour tout entier $n \ge 2$ et tout réel x, $T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)$.

PARTIE I : Étude de la suite de polynômes $(T_n)_{n\in\mathbb{N}}$

- 1. Calculer T_2 et T_3 .
- 2.a. Démontrer que, pour tout entier naturel n, T_n est un polynôme de degré n, dont on déterminera le coefficient du terme de degré n.
 - b. Établir que, si n est un entier pair (resp. impair), alors T_n est un polynôme pair (resp. impair).
- 3. Calculer, pour tout entier naturel n, $T_n(1)$ en fonction de n.
- 4. a. Établir, pour tout entier naturel n et tout réel θ de $]0;\pi[$:

$$T_n(\cos\theta) = \frac{\sin((n+1)\theta)}{\sin\theta}$$

- b. En déduire que, pour tout entier naturel non nul n, T_n admet n racines réelles, toutes situées dans]-1;1[, que l'on explicitera.
- c. Établir, pour tout entier naturel non nul n:

$$T_n = 2^n \prod_{k=1}^n \left(X - \cos \frac{k\pi}{n+1} \right).$$

d. En déduire, pour tout entier naturel non nul n, la valeur de $\prod_{k=1}^{n} \sin \frac{k\pi}{2(n+1)}$ en fonction de n.

5. a. Démontrer, pour tout entier naturel n et tout réel θ de $]0;\pi[$:

$$\sin^2 \theta \ T_n''(\cos \theta) - 3\cos \theta \ T_n'(\cos \theta) + (n^2 + 2n) T_n(\cos \theta) = 0 \ .$$

Indication: On pourra dériver deux fois la fonction (nulle):

$$\theta \longmapsto \sin \theta \ T_n(\cos \theta) - \sin(n+1)\theta$$
.

b. En déduire, pour tout entier naturel n:

$$(X^2 - 1) T_n'' + 3 X T_n' - (n^2 + 2n) T_n = 0 .$$

Dans la suite du problème, n désigne un entier naturel fixé tel que $n \ge 2$, et on note E l'espace vectoriel réel des polynômes de $\mathbb{R}[X]$ de degré inférieur ou égal à n.

On note L l'application qui, à un polynôme P de E, associe le polynôme L(P) défini par :

$$L(P) = (X^2 - 1)P'' + 3XP'.$$

PARTIE II : Étude de l'endomorphisme L

- 1. Montrer que L est un endomorphisme de l'espace vectoriel E.
- **2. a.** Calculer $L(T_k)$ pour tout k de $\{0,1,...,n\}$.
 - b. En déduire les valeurs propres de L et, pour chaque valeur propre de L, une base et la dimension du sous-espace propre associé.

PARTIE III: Étude d'un produit scalaire

Dans la suite du problème, on note φ l'application qui, à un couple (P,Q) de polynômes de E, associe le réel $\varphi(P,Q)$ défini par :

$$\varphi(P,Q) = \int_{-1}^{1} \sqrt{1-x^2} P(x) Q(x) dx.$$

- 1. Montrer que φ est un produit scalaire sur E.
- 2. Démontrer, pour tous polynômes P,Q de E:

$$\varphi(L(P),Q) = \varphi(P,L(Q)).$$

Indication: On pourra, à l'aide d'une intégration par parties, montrer :

$$\varphi(L(P),Q) = \int_{-1}^{1} (1-x^2)^{\frac{3}{2}} P'(x) Q'(x) dx.$$

3. Établir que $(T_k)_{0 \le k \le n}$ est une base orthogonale de E.

DEUXIÈME PROBLÈME

PARTIE I : Calcul de la somme d'une série convergente

1. Vérifier, pour tout
$$n \in \mathbb{N}^*$$
 : $\int_0^{\pi} \left(\frac{t^2}{2\pi} - t\right) \cos(nt) dt = \frac{1}{n^2}$.

2. Établir, pour tout $m \in \mathbb{N}^*$ et pour tout $t \in]0; \pi]$:

$$\frac{1 - e^{imt}}{1 - e^{it}} e^{it} = \frac{\sin\frac{mt}{2}}{\sin\frac{t}{2}} e^{\frac{i(m+1)t}{2}} , \text{ puis } \sum_{n=1}^{m} \cos(nt) = \frac{\cos\frac{(m+1)t}{2}\sin\frac{mt}{2}}{\sin\frac{t}{2}}.$$

- 3. Soit $u:[0;\pi] \longrightarrow \mathbb{R}$ une application de classe \mathcal{C}^1 .

 Montrer, à l'aide d'une intégration par parties : $\int_0^{\pi} u(t) \sin(\lambda t) dt \xrightarrow[\lambda \to +\infty]{} 0$.
- 4. Soit l'application $f: [0;\pi] \longrightarrow \mathbb{R}$ définie par $f(t) = \frac{\frac{t^2}{2\pi} t}{2\sin\frac{t}{2}}$ si $t \in]0;\pi]$, et f(0) = -1.

 Montrer que f est de classe \mathcal{C}^1 sur $[0;\pi]$.
- **5.a.** Montrer: $\forall m \in \mathbb{N}^*, \quad \sum_{n=1}^m \frac{1}{n^2} = \frac{\pi^2}{6} + \int_0^\pi f(t) \sin \frac{(2m+1)t}{2} dt.$
 - b. Justifier la convergence de la série $\sum_{n\geqslant 1}\frac{1}{n^2}$ et montrer : $\sum_{n=1}^{+\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$.

PARTIE II : Étude d'une fonction définie par la somme d'une série convergente

- 1.a. Montrer que, pour tout couple $(x,y) \in ([0;+\infty[)^2],$ la série $\sum_{n\geqslant 1} \frac{1}{(n+x)(n+y)}$ et la série $\sum_{n\geqslant 1} \frac{1}{(n+x)^2(n+y)}$ convergent.
 - **b.** Montrer que, pour tout $x \in [0; +\infty[$, la série $\sum_{n \ge 1} \left(\frac{1}{n} \frac{1}{n+x}\right)$ converge.

On note S l'application définie, pour tout x de $[0; +\infty[$, par $S(x) = \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x}\right)$.

2. Calculer S(0) et S(1).

- **3.a.** Établir: $\forall (x,y) \in ([0;+\infty[)^2, S(y)-S(x)=(y-x)\sum_{n=1}^{+\infty} \frac{1}{(n+x)(n+y)})$
 - **b.** En déduire : $\forall (x,y) \in ([0;+\infty[)^2, |S(y)-S(x)| \leq \frac{\pi^2}{6}|y-x|.$
 - c. Montrer alors que la fonction S est continue sur $[0; +\infty[$.
- **4.a.** Montrer, pour tout couple (x, y) de $([0; +\infty[)]^2$ tel que $x \neq y$:

$$\left| \frac{S(y) - S(x)}{y - x} - \sum_{n=1}^{+\infty} \frac{1}{(n+x)^2} \right| \le |y - x| \sum_{n=1}^{+\infty} \frac{1}{n^3}.$$

b. En déduire que la fonction S est dérivable sur $[0; +\infty[$ et que :

$$\forall x \in [0; +\infty[, S'(x)] = \sum_{n=1}^{+\infty} \frac{1}{(n+x)^2}$$

- c. Préciser les valeurs de S'(0) et de S'(1).
- 5. On admet que S est deux fois dérivable sur $[0; +\infty[$ et que :

$$\forall x \in [0; +\infty[, S''(x)] = -\sum_{n=1}^{+\infty} \frac{2}{(n+x)^3}$$

Montrer que S est concave.

- 6. Soit $x \in]0; +\infty[$ fixé. On note φ la fonction définie sur $[1; +\infty[$ par : $\forall t \in [1; +\infty[$, $\varphi(t) = \frac{1}{t} \frac{1}{t+x}$.
 - a. Montrer que l'intégrale $\int_1^{+\infty} \varphi(t) dt$ converge et calculer sa valeur.
 - **b.** Montrer: $\forall n \in \mathbb{N}^*, \quad \varphi(n+1) \leqslant \int_n^{n+1} \varphi(t) \, \mathrm{d}t \leqslant \varphi(n),$ et en déduire: $\int_1^{+\infty} \varphi(t) \, \mathrm{d}t \leqslant S(x) \leqslant 1 + \int_1^{+\infty} \varphi(t) \, \mathrm{d}t.$
 - c. Conclure: $S(x) \sim \lim_{x \to +\infty} \ln x$.
- 7.a. Dresser le tableau de variation de S, en précisant la limite de S en $+\infty$.
 - b. Tracer l'allure de la courbe représentative de S.