

# BANQUE COMMUNE D'EPREUVES

CODE SUJET: 283 CCIP M2 S

Conceptions: H.E.C. - E.S.C.P. - E.A.P.

**OPTION: SCIENTIFIQUE** 

## **MATHEMATIQUES II**

Mercredi 9 Mai 2007, de 14 h. à 18 h.

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs.

Ils ne doivent faire usage d'aucun document : l'utilisation de toute calculatrice et de tout matériel électronique est interdite.

Seule l'utilisation d'une règle graduée est autorisée.

Pour toute variable aléatoire réelle Y définie sur un espace probabilisé  $(\Omega, \mathcal{A}, P)$  et possédant une espérance mathématique, on note E(Y) cette espérance pour la probabilité P.

Pour tout événement C de A tel que P(C) > 0, on note, sous réserve d'existence, E(Y/C) l'espérance de Y pour la probabilité conditionnelle  $P_C$  (espérance conditionnelle de Y sachant C).

#### Partie I.

Cette partie constitue une application particulière des résultats généraux étudiés dans la suite du problème.

On possède n urnes  $(n \ge 3)$  numérotées de 1 à n, dans lesquelles on répartit au hasard et de façon indépendante, m boules indiscernables  $(m \ge 4)$ , de sorte que, pour tout i de [1, n], la probabilité pour chaque boule d'être placée dans l'urne numéro i soit égale à 1/n.

On suppose que cette expérience est modélisée par un espace probabilisé  $(\Omega, \mathcal{A}, P)$ .

À l'issue de cette expérience, on pose pour tout i de [1, n]:

$$X_i = \begin{cases} 1 & \text{si l'urne n}^{\circ} i \text{ est vide} \\ 0 & \text{sinon} \end{cases}$$

On pose 
$$W_n = \sum_{i=1}^n X_i$$
.

- 1. a) Déterminer pour tout i de [1, n], la loi de la variable aléatoire  $X_i$ .
- b) Pour tout couple (i,j) d'entiers de [1,n] distincts, calculer  $P([X_i=1] \cap [X_j=1])$ , ainsi que la covariance de  $X_i$  et  $X_j$ . Les variables aléatoires  $X_i$  et  $X_j$  sont-elles indépendantes?
- 2. a) Exprimer l'espérance  $E(W_n)$  de  $W_n$  en fonction de n et m.
- b) On note  $V(W_n)$  la variance de  $W_n$ . Calculer  $V(W_n)$  en fonction de n et m.

- c) Vérifier l'égalité :  $E(W_n)-V(W_n)=n^2\left(1-\frac{1}{n}\right)^{2m}-n(n-1)\left(1-\frac{2}{n}\right)^m$ . En déduire que  $E(W_n)-V(W_n)\geqslant 0$ .
- 3. Dans cette question, l'entier m vérifie  $m = \lfloor n \ln n + \theta n \rfloor$ , où  $\theta$  est une constante réelle positive et  $\lfloor x \rfloor$  désigne la partie entière de x.
- a) Calculer  $\lim_{n\to+\infty} E(W_n)$ .
- b) Montrer que  $\lim_{n \to +\infty} (E(W_n) V(W_n)) = 0$ .
- c) Soit  $T_n$  une variable aléatoire qui suit une loi de Poisson de paramètre  $\mu_n = E(W_n)$ . On admet que pour tout k de  $\mathbb{N}$ , on a :

$$|P([W_n = k]) - P([T_n = k])| \leqslant \min\left(1, \frac{1}{\mu_n}\right) \times (\mu_n - V(W_n))$$

Quelle est la limite en loi de la suite de variables aléatoires  $(W_n)_{n\geqslant 3}$ ?

4. On pose  $\mu = e^{-\theta}$ , et on suppose que le paramètre  $\mu$  est inconnu. Dans cette question, on veut estimer  $\mu$ . Pour p entier de  $\mathbb{N}^*$ , on considère un p-échantillon indépendant, identiquement distribué  $(T_1, T_2, \dots, T_p)$  de la loi de Poisson de paramètre  $\mu$ . On pose :

$$\overline{T_p} = \frac{1}{p} \sum_{i=1}^p T_i \text{ et } U_p = \sqrt{p} \frac{\overline{T_p} - \mu}{\sqrt{\mu}}$$

- a) Montrer que  $\overline{T_p}$  est un estimateur sans biais et convergent du paramètre  $\mu$ .
- b) Quelle est la limite en loi de la suite de variables aléatoires  $(U_p)_{p\geqslant 1}$ ?
- c) On veut construire, pour p assez grand, un intervalle de confiance du paramètre  $\mu$  au risque  $\alpha$  donné. Soit u le réel strictement positif tel que  $P([U\geqslant u])=\alpha/2$ , où U est une variable aléatoire qui suit la loi normale centrée réduite.

Justifier que pour p assez grand, on peut écrire :  $P([|U_p| \leq u]) = 1 - \alpha$ , et déterminer alors un intervalle de confiance  $[I_p, J_p]$  pour  $\mu$  au risque  $\alpha$ .

### Partie II

Dans cette partie,  $\lambda$  désigne un réel strictement positif.

Soit M une variable aléatoire définie sur un espace probabilisé  $(\Omega, \mathcal{A}, P)$  qui suit une loi de Poisson de paramètre  $\lambda$ .

Soit A une partie quelconque de  $\mathbb N$  et  $\overline A$  son complémentaire dans  $\mathbb N$ . On rappelle que si A est non vide, alors,  $P([M \in A]) = \sum_{i \in A} e^{-\lambda} \frac{\lambda^i}{i!}$ , et on pose par convention  $[M \in \emptyset] = \emptyset$ .

On considère la fonction  $f_A$  définie sur  $\mathbb N$  par  $f_A(0)=0,$  et pour tout k de  $\mathbb N$  :

$$f_A(k+1) = \frac{k!}{\lambda^{k+1}} e^{\lambda} \left( P([M \in A] \cap [M \leqslant k]) - P([M \in A]) \times P([M \leqslant k]) \right)$$

- 1. a) Déterminer la fonction  $f_A$  dans les cas particuliers  $A = \emptyset$  et  $A = \mathbb{N}$ .
- b) Donner l'expression de  $f_A(1)$  en fonction de  $\lambda$  et de  $P([M \in A])$  dans les deux cas suivants :  $0 \in A$  et  $0 \in \overline{A}$ . Exprimer  $f_A(2)$  en fonction de  $\lambda$  et de  $P([M \in A])$  dans le cas où 0 et 1 appartiennent à A.
- 2. Soit A et B deux parties de  $\mathbb{N}$  disjointes.
- a) Montrer que  $f_{A \cup B} = f_A + f_B$
- b) En déduire que  $f_{\overline{A}} = -f_A$ .

3. a) Montrer que pour tout k de  $\mathbb{N}$ , la fonction  $f_A$  vérifie la relation suivante :

$$\lambda f_A(k+1) - k f_A(k) = \begin{cases} P([M \in \overline{A}]) & \text{si } k \in A \\ -P([M \in A]) & \text{si } k \in \overline{A} \end{cases}$$

- b) En déduire que si A est non vide et distincte de  $\mathbb{N}$ , la fonction  $f_A$  n'est pas identiquement nulle.
- 4. Dans cette question, j est un entier naturel non nul, et A est le singleton  $\{j\}$ . On pose  $f_{\{j\}} = f_j$ .
- a) Pour tout k de  $\mathbb{N}^*$ , montrer l'égalité suivante :

$$f_j(k+1) = \begin{cases} \frac{k!}{j!\lambda^{k-j+1}} P([M \geqslant k+1]) & \text{si } k \geqslant j \\ -\frac{k!}{j!\lambda^{k-j+1}} P([M \leqslant k]) & \text{si } k < j \end{cases}$$

- b) Calculer  $f_j(j+1) f_j(j)$ , et déterminer son signe.
- c) Calculer pour tout k de  $\mathbb{N}^*$ , différent de j,  $f_j(k+1) f_j(k)$  en distinguant les deux cas : k > j et k < j. En déduire que la différence  $f_j(k+1) f_j(k)$  est positive si et seulement si k = j.
- d) Établir les inégalités suivantes :  $f_j(j+1) f_j(j) \leqslant \frac{1-e^{-\lambda}}{\lambda} \leqslant \min\left(1, \frac{1}{\lambda}\right)$ .
- 5. On considère le singleton  $\{0\}$  et on pose  $f_{\{0\}}=f_0$ . Montrer, pour tout k de  $\mathbb{N}^*$ , l'inégalité suivante :  $f_0(k+1)-f_0(k)\leqslant 0$ .
- 6. a) Établir pour tout k de  $\mathbb{N}$ , l'inégalité suivante :  $f_A(k+1) f_A(k) \leq f_k(k+1) f_k(k)$ . (on distinguera les deux cas :  $k \in A$  et  $k \in \overline{A}$ )
- b) En déduire, pour toute partie A de  $\mathbb{N}$ , l'inégalité suivante :

$$\sup_{k\geqslant 0} |f_A(k+1) - f_A(k)| \leqslant \min\left(1, \frac{1}{\lambda}\right)$$

#### Partie III.

Soit n un entier supérieur ou égal à 2. On considère n variables aléatoires discrètes indépendantes  $X_1, X_2, \ldots, X_n$  définies sur un même espace probabilisé  $(\Omega, \mathcal{A}, P)$ , telles que pour tout i de  $[\![1, n]\!]$ , la variable aléatoire  $X_i$  suit une loi de Bernoulli de paramètre  $p_i$  strictement positif.

On pose 
$$\lambda_n = \sum_{i=1}^n p_i$$
,  $W_n = \sum_{i=1}^n X_i$  et, pour tout  $i$  de  $[1, n]$ ,  $R_i = W_n - X_i$ .

On note  $M_n$  une variable aléatoire qui suit une loi de Poisson de paramètre  $\lambda_n$ . Soit A une partie quelconque de  $\mathbb{N}$ , et  $f_A$  la fonction définie dans la partie II, dans l'expression de laquelle on remplace M par  $M_n$  et  $\lambda$  par  $\lambda_n$ . On pose  $f = f_A$ .

- 1. a) Établir pour tout i de [1, n], l'égalité des deux variables aléatoires  $X_i f(W_n)$  et  $X_i f(1 + R_i)$ .
- b) En déduire pour tout i de [1, n], l'égalité :  $E(X_i f(W_n)) = p_i E(f(1 + R_i))$ .
- 2. Pour tout i de [1, n], on pose :  $Y_i = f(1 + W_n) f(1 + R_i)$ .

Établir la relation suivante :  $E(\lambda_n f(1+W_n) - W_n f(W_n)) = \sum_{i=1}^n p_i E(Y_i)$ .

3. a) Établir pour tout i de [1, n], la formule suivante :

$$E(Y_i/[X_i = 1]) = E(f(2 + R_i) - f(1 + R_i))$$

b) Calculer pour tout i de [1, n],  $E(Y_i/[X_i = 0])$ .

c) Déduire des questions précédentes l'égalité suivante :

$$E(\lambda_n f(1+W_n) - W_n f(W_n)) = \sum_{i=1}^n p_i^2 E(f(2+R_i) - f(1+R_i))$$

4. Établir l'inégalité suivante :

$$|E(\lambda_n f(1+W_n) - W_n f(W_n))| \le \min\left(1, \frac{1}{\lambda_n}\right) \times \sum_{i=1}^n p_i^2$$

5. À l'aide de la question II.3.a, montrer, pour toute partie A de  $\mathbb{N}$ , l'égalité suivante :

$$E(\lambda_n f(1+W_n) - W_n f(W_n)) = P([W_n \in A]) - P([M_n \in A])$$

En déduire, pour toute partie A de  $\mathbb{N}$ , la majoration suivante :

$$|P([W_n \in A]) - P([M_n \in A])| \le \min\left(1, \frac{1}{\lambda_n}\right) \times \sum_{i=1}^n p_i^2$$

- 6. Dans cette question uniquement, on suppose que pour tout i de  $[\![1,n]\!]$ ,  $X_i$  suit la loi de Bernoulli de paramètre  $p_i = \frac{1}{n+i}.$
- a) Déterminer  $\lim_{n \to +\infty} \lambda_n$ . Montrer que  $\lim_{n \to +\infty} \sum_{i=1}^n p_i^2 = 0$ .
- b) Déterminer la limite en loi de la suite  $(W_n)_{n\geqslant 2}$ .

### Partie IV.

Les notations sont identiques à celles de la partie III, mais les variables aléatoires  $X_1, X_2, \ldots, X_n$  définies sur  $(\Omega, \mathcal{A}, P)$ , ne sont pas nécessairement indépendantes.

- 1. a) Montrer que pour tout i de [1, n], on a :  $E(X_i f(W_n)) = p_i E(f(1 + R_i)/[X_i = 1])$ .
- b) En déduire l'égalité suivante :  $P([W_n \in A]) P([M_n \in A]) = \sum_{i=1}^n p_i \Big[ E(f(1+W_n)) E(f(1+R_i)/[X_i=1]) \Big]$ .
- 2. On suppose que pour tout i de [1,n], il existe une variable aléatoire  $Z_i$  définie sur  $(\Omega, \mathcal{A}, P)$ , à valeurs dans  $\mathbb{N}$ , telle que la loi de  $Z_i$  soit identique à la loi conditionnelle de  $R_i$  sachant  $[X_i = 1]$ .
- a) Justifier, pour tout couple  $(\ell, j)$  d'entiers naturels, l'inégalité :  $|f(\ell) f(j)| \le |\ell j| \times \min\left(1, \frac{1}{\lambda_n}\right)$ , et en déduire la majoration suivante :  $|P([W_n \in A]) - P([M_n \in A])| \le \min\left(1, \frac{1}{\lambda_n}\right) \times \sum_{i=1}^n p_i E(|W_n - Z_i|)$ .
- b) On suppose de plus que pour tout  $\omega$  de  $\Omega$ , pour tout i de [1,n], on a  $W_n(\omega) \geq Z_i(\omega)$ . Établir l'égalité :  $\sum_{i=1}^n p_i E(|W_n Z_i|) = \lambda_n V(W_n), \text{ où } V(W_n) \text{ désigne la variance de } W_n.$

 $\stackrel{\cdot}{\operatorname{En}}$  déduire, pour toute partie A de  $\mathbb N$ , l'inégalité suivante :

$$|P([W_n \in A]) - P([M_n \in A])| \le \min\left(1, \frac{1}{\lambda_n}\right) \times (\lambda_n - V(W_n))$$